
Oracle Performance Management
 – A Radical Approach

Gaja Krishna Vaidyanatha
Director, Storage Management Products, Quest Software Inc.

i

Primary Author - Oracle Performance Tuning 101
http://www.osborne.com/database_erp/0072131454/0072131454.shtml

StorageXpert for Oracle – Visit us http://www.quest.com/storage_xpert

A Minute of Silence…

Now, that sounds like fun!!!

For more information check out http://www.geekcruises.com

“It’s almost ‘duh!’. What
is common sense is not
common practice.”

- Steven Covey

Explain Plan for this Session

§ The Problem
§ The Effect
§ Good Performance Habits
§ The Method Behind the Madness
§ Performance Benchmarking
§ Identifying the Oracle Bottlenecks – Prong I
§ Identifying the OS Bottlenecks – Prong II
§ The Holy Grail of Oracle Performance Tuning
§ Putting It All Together
§ An Extreme Example
§ Why are you tuning?
§ That’s a Wrap

The Problem

§ Perception – Oracle Performance Tuning is wizardry
§ Why? – Too many things to check…too many ratios to figure out…

§ Erroneous and irrelevant printed, presented and spoken material
 correlating tuning with Oracle cache-hit ratios. Here are a few:
§ Ratios should be > 90%, some even > 99%, else performance is bad.
§ Any drop in ratios = Performance Loss
§ Larger the Oracle caches = Better System Performance.
§ Eliminate Physical I/O = Performance Gains
§ And more nonsense….

§ Result - DBAs are now competing with one another to throw more
 memory at the various caches in the Oracle SGA

The Effect

§ Arbitrary attempts to allocate more memory and
 endless editing of the init.ora in efforts to cure
 performance problems.
§ Various “hunt and peck” expeditions based on
 “expert recommendations”.
§ System performance problems start to feel like
 tunnels with no end in sight.
§ System resource capacity wastage & misuse, lack
 of productivity and frustration.

Good Performance Habits

§ Cache-hit-ratios are for losers [Mogens NØrgaard]
§ Seek out the bottlenecks on your systems
§ Cure the disease, not just the symptoms
§ Tuning the resource hogs on your system will provide you
 the maximum benefit.
§ Set tuning goals, stop tuning when you accomplish them
§ Do not treat tuning as a contest or a never-ending laundry
 list
§ Take expert recommendations with a grain of salt…no make
 that a bag of salt…;-).
§ If you suffer from CTD, get help!!!

The Method Behind
the Madness

§ Seek out the “Oracle Bottlenecks” using the OWI – Prong I
§ Seek out the “OS bottlenecks” when required – Prong II
§ Move each prong towards the other
§ When they meet – The real bottlenecks are detected and
 the performance problem is accurately defined
§ Make calculated minimal changes as required
§ Measure the effect of each change

The Method Behind
the Madness

§ The Oracle Prong (OWI) is comprised of v$system_event,
 v$session_event, v$session_wait and trace files
 generated by the 10046 event - Prong I
§ The OS prong is comprised of bottleneck checks for CPU,
 Memory, I/O and Network – Prong II
§ The second prong is required for additional information that
 the first prong could not provide.
§ When the bottleneck does not show up in Prong I, the
 use of Prong II is imminent.
§ When the 2 prongs meet, you did it!

The Method Behind
the Madness:

Why is the OS Prong Needed?

§ The OWI does not detect CPU bottlenecks
§ The OWI does not detect memory bottlenecks
§ The statistics are measured in centiseconds (1/100 sec.)

– Until Oracle9i
§ Even many sub-centisecond events need your attention
§ I/O, Memory or CPU bottlenecks can cause many
 sub-centisecond events.
§ Finally, it helps you find out “bottlenecks external to Oracle”

Performance Benchmarking

§ Duration of measurement depends on the duration
 of the problem.
§ Need to benchmark performance before and after
 any change implemented
§ Set TIMED_STATISTICS=TRUE
§ Run utlbstat/utlestat
§ Under $ORACLE_HOME/rdbms/admin
§ Generates a report called report.txt

Performance Benchmarking

§ STATSPACK is preferred in Oracle 8i and beyond
§ Check out spdoc.txt under $?/rdbms/admin for more
 information
§ Need help in analyzing your BSTAT/ESTAT and
 STATSPACK reports?

- Check out the online analyzer at http://www.oraperf.com
§ Need a performance data collector?

- Check out Sparky at http://www.hotsos.com
- SQLab Vision’s Stealth Collect - at http://www.quest.com

The Method Behind
the Madness:

The Oracle Prong (I)

§ Start with v$system_event to determine the top wait events on
 your system
§ Drill down to v$session_event which provides session-level events
 & v$session_ wait which provides session-level waits
§ Get all the SQL for the session in question - join v$session_wait,
 v$session,v$sql
§ Get the bottlenecking segment for this SQL by joining
 v$session_wait, dba_data_files, dba_extents

The Method Behind
the Madness:

Using v$system_event

§ Columns
– Event
– Total_Waits
– Total_Timeouts
– Time_waited – in centiseconds
– Avg_wait – also in centiseconds

The Method Behind
the Madness:

Using v$session_event

§ Same columns as in v$system_event with session
 information
§ Information can change as the session metrics change
§ As sessions log-off, the statistics are lost
§ Remember to get the SQL executed by these sessions

The Method Behind
the Madness:

Using v$session_wait

§ Complex view to understand
§ Wait statistics are reported as they happen
§ Drills down to the actual problem…
§ Columns you should care about

– sid, seq#, event, p1..p3
– state, wait_time, seconds_in_wait

The Method Behind
the Madness:

Using v$session_wait

§ p1 - p3
– Provides details on the wait events
– Example : For wait event “db file sequential
 read” - p1 is the file# and p2 is the block#
– Example: For wait event “latch free” - p2 is
 the latch# related to the latch# in v$latch

The Method Behind
the Madness:

Understanding STATE

§ Waiting - Currently waiting for the event
§ Waited Unknown Time - timed_statistics is not set to
 TRUE, i.e., is set to FALSE
§ Waited Short Time - Waited for an insignificant amount
 of time – Not really worth looking for round1, take care of
 this in round 2
§ Waited Known Time – If the resource that is waited
 upon is gained at a later time, the state changes from
 Waiting to Waited Known Time

The Method Behind
the Madness:

Understanding WAIT_TIME

§ The value for this column is STATE dependent.
§ If state = (Waiting or Waited Unknown Time or
 Waited Short Time) then
 Wait_Time = Irrelevant;
 End If;
§ If state = (Waited Known Time) then
 Wait_Time = Actual wait time, in seconds;
 End If;

The Method Behind
the Madness:

Understanding SECONDS_IN_WAIT

§ The value for this column is STATE dependent.
§ If state = (Waited Unknown Time or
Waited Short Time or Waited Known Time) then
 Seconds_In_Wait = Irrelevant;
 End If;
§ If state = (Waiting) then
 Seconds_In_Wait = Actual Wait Time in Seconds;
 End If;

The Method Behind
the Madness:

The OS Prong (II)

§ CPU Bottlenecks
§ Memory Bottlenecks
§ I/O Bottlenecks

The Method Behind
the Madness:

Monitoring the OS : CPU

§ sar –u 5 10000
– %usr, %sys, %wio, %idle
– %wio and %sys typically should be < 10-15%
– 0% idle is OK, so long as %wio and %sys is not
 high and CPU run-queue < (2-3 * (# of CPUs))

§ Determine CPU Run Queue – vmstat –S 5 10000
 (The column – “r” in the output)
§ CPU Run Queue – top – Runnable

The Method Behind
the Madness:

Monitoring the OS : I/O

§ sar –d 5 10000
§ I/O requests should be evenly balanced
§ I/O re-configuration should considered when only
 some devices get most of the I/O requests
§ High disk queue numbers + high service times
 è I/O contention
§ Check out a state-of-the-art I/O bottleneck diagnostic
 tool - StorageXpert for Oracle at
 http://www.quest.com/storage_xpert

The Method Behind
the Madness:

Monitoring the O-S : Memory

§ vmstat –S 5 10000
– sr should be in and around 0
– swapins and swapouts should be 0
– Level of paging should also be at a minimum

§ High I/O activity to the device where the swapfile or
 swap partition lives
§ Do not go overboard on SGA sizing just to get high
 cache hit ratios

The Method Behind
the Madness:

Tools for OS Monitoring

§ sar, mpstat, iostat
§ vmstat
§ Misc. Performance Monitors
§ Sun’s Monitoring Toolkit
§ Adrian’s Tool - Sun Solaris Only
§ Hewlett Packard’s - MeasureWare, GlancePlus
§ NT Performance Monitor
§ Various freeware utilities for NT at SysInternals.com
 - http://www.sysinternals.com

The Holy Grail of Oracle
Performance Tuning

/* For your own session */
alter session set timed_statistics=true; /* If not already set */
alter session set max_dump_file_size=unlimited; /* Prevent trace file truncation */

/* Set event for SQL Trace at the appropriate level
1 = Get Statistics -- Same as setting sql_trace = true
4 = Get Statistics and Bind Variable Values
8 = Get Statistics and Wait Event Information
12 = Get Statistics and Bind Variable Values, Wait Event Information */

alter session set events ‘10046 trace name context forever, level 12’;
/* Trace session application for the duration of the problem */
/* Find trace file using the SPID in the USER_DUMP_DEST directory.
 Scan the file for all lines that begin with the word WAIT. Turn off tracing
 completely */
alter session set SQL_TRACE=FALSE;

The Holy Grail of Oracle
Performance Tuning

/* For someone else’s session - Identify the session’s process ID (SPID) */
select S.Username, P.Spid, S.Sid, S.Serial#
 from V$SESSION S, V$PROCESS P
 where S.PADDR = P.ADDR and S.Username like ‘A%’;

/* Turn on the 10046 wait event for that session’s process */
oradebug setospid <SPID>
oradebug unlimit
oradebug event 10046 trace name context forever, level 12

/* Trace session application for the duration of the problem */
/* Find trace file using the SPID in the USER_DUMP_DEST directory.
 Scan the file for all lines that begin with the word WAIT. Turn off tracing
 completely */
exec dbms_system.set_sql_trace_in_session (SID,SERIAL#,FALSE);

The Method Behind
the Madness:

Putting it all Together

§ You look at v$system_event
§ db file sequential reads is the main wait event
§ This wait event is usually for “index reads”
§ You drill down to v$session_wait
§ p1 is the file# and p2 is the block# waited on
§ Using p1 and p2 join with dba_extents and
 dba_ data_files, the culprit segment is singled out

The Method Behind
the Madness:

Putting it all Together

§ Joining v$session_wait to v$session to v$sql to get
 the SQL causing and experiencing the bottleneck(s)
§ Use the OS prong as appropriate for bottlenecks related
 memory and CPU

The Method Behind
the Madness:

Need More?

§ Read Craig Shallahammer’s paper on the subject
§ Read the Anjo Kolk’s YAPP paper, study the “Wait Events” in the
 Oracle Reference Appendix
§ Read Cary Millsap’s paper on the subject
§ Read the Oracle Performance Tuning 101 (Osborne/McGraw-Hill
 - Oracle Press)
§ www.oraperf.com - Anjo Kolk’s website and online report profiler
§ www.orapub.com - Craig’s website for papers/scripts/tools
§ www.hotsos.com - Cary Millsap’s website for papers/scripts/tools
§ www.evdbt.com - Tim Gorman’s website for papers/scripts
§ www.quest.com - Quest home page for various tools and solutions

An Extreme Example - I

§ 8GB SGA (4.5GB Shared Pool)
§ Pre-tuning state – Init.ora was tuned like crazy. To attain a high
 library cache-hit ratio memory was periodically added (in vain).
 Bad response times with online queries. The system was
 experiencing severe parsing hiccups.
§ Bottleneck - Severe library cache latch contention
§ Cause - Lack of bind variable usage
§ Post-tuning state - On fixing the application, shared pool was
 shrunk to 256MB. Pre-tuning state symptoms vanished. System
 performance came right back.

An Extreme Example - II

§ 6GB SGA (4GB Database Buffer Cache)
§ Pre-tuning State - Init.ora parameters were all tuned. Cache-hit
 ratios were nice and balmy (90s). But response time was terrible.
 Very high CPU usage.
§ Bottleneck – Severe contention for the cache buffers chains and
 cache buffers lru chain latches. Moderate contention on db file
 sequential read and buffer busy waits.
§ Cause - Correlated sub-queries, queries forced to use indexes,
 lack of enough freelists on the tables with many concurrent inserts
§ Post-tuning State - Fixed the application, added more freelists to
 the relevant tables, shrunk DB buffer cache to 1GB, resurrected
 the system from the performance graveyard.

Why are you tuning?

§ Is anyone complaining of performance?
§ What are the wait events in your database?
§ What are the bottlenecks on your system?
§ Have you “unearthed” any performance

problem?
§ Are you running your life on cache-hit ratios?
§ Are you suffering from CTD?
§ Is it time for a drink or two?

That’s a Wrap

§ Cache-hit ratios are useless numbers
§ The 2-pronged approach provides you more information
 about system bottlenecks that any cache-hit ratio
§ You need a method that provides repeated and consistent
 tuning success…you now know one!!!!
§ Remember the 80-20 rule
§ Setting specific tuning goals and ceasing the tuning effort
 when the goals are attained requires discipline

Contact Information

Gaja Krishna Vaidyanatha
Director, Storage Management Products, Quest Software Inc.

gaja@quest.com or gajav@yahoo.com

Questions and Answers

Business runs better on us

