Oracle

3

' Oracle Performance Management
— A Radical Approach

Gaja Krishna Vaidyanatha
Director, Storage Management Products, Quest Software Inc.

StorageXpert for Oracle — Visit us http://www.quest.com/storage_xpert

Primary Author - OrI erformance Tuning 101

http://lwww.osborne.com/database erp/0072131454/0072131454.shtml

QUEST
SOFTWARE

A Minute of Silence...

QUEST
SOFTWARE

Now, that sounds like fun!!!
— ;

!]EE | Eﬂm ¢ ' | }
| 2 CRBISES FOF TRE COMPITER REOEETTANAL i] .
i " - e . : i ‘ . ’
BN @ ﬂ- N
: '.*.... 2 #ﬂ_;..‘n F ‘ ' '

,_.i..” _

- rim als Inirlgue.
- [IiGpical Oracle '

gildeas for Oracle
AN }' sDBAS und Deve:‘apers!
B | 3

May 2 - Ma | |
2002 & A |

e
Fs |

For more information check out http://www.geekcruises.com

QUEST
SOFTWARE

“It’s almost ‘duh!’. What
IS cCOmMmon sense IS not
common practice.”

- Steven Covey

QUEST
SOFTWARE

Explain Plan for this Session

= The Problem

= The Effect

= Good Performance Habits

* The Method Behind the Madness

= Performance Benchmarking

= |dentifying the Oracle Bottlenecks — Prong |

= |dentifying the OS Bottlenecks — Prong Il

= The Holy Gralil of Oracle Performance Tuning
= Putting It All Together

= An Extreme Example

= Why are you tuning?

= That's a Wrap e AT

The Problem

= Perception — Oracle Performance Tuning Is wizardry

" Why? - Too many things to check...too many ratios to figure out...
= Erroneous and irrelevant printed, presented and spoken material

correlating tuning with Oracle cache-hit ratios. Here are a few:
= Ratios should be > 90%, some even > 99%, else performance is bad.
= Any drop in ratios = Performance Loss
= Larger the Oracle caches = Better System Performance.
= Eliminate Physical I/O = Performance Gains
= And more nonsense....

= Result- DBAs are now competing with one another to throw more
memory at the various caches in the Oracle SGA

QUEST
SOFTWARE

The Effect

Arbitrary attempts to allocate more memory and
endless editing of the Init.ora in efforts to cure
performance problems.

Various “hunt and peck” expeditions based on
“expert recommendations”.

System performance problems start to feel like
tunnels with no end in sight.

System resource capacity wastage & misuse, lack
of productivity and frustration.

QUEST
SOFTWARE

Good Performance Habits

Cache-hit-ratios are for losers [Mogens Ngrgaard]

Seek out the bottlenecks on your systems

Cure the disease, not just the symptoms

Tuning the resource hogs on your system will provide you
the maximum benefit.

Set tuning goals, stop tuning when you accomplish them
Do not treat tuning as a contest or a never-ending laundry
list

Take expert recommendations with a grain of salt...no make
that a bag of salt...;-).

If you suffer from CTD, get help!!!

QUEST
SOFTWARE

The Method Behind
the Madness

Seek out the “Oracle Bottlenecks” using the OWI — Prong |
Seek out the “OS bottlenecks” when required — Prong
Move each prong towards the other

When they meet — The real bottlenecks are detected and
the performance problem is accurately defined

Make calculated minimal changes as required

Measure the effect of each change

QUEST
SOFTWARE

The Method Behind
the Madness

The Oracle Prong (OWI) is comprised of vdsystem_event,
v$session_event, vsession wait and trace files
generated by the 10046 event - Prong |

The OS prong is comprised of bottleneck checks for CPU,
Memory, 1/0 and Network — Prong

The second prong is required for additional information that
the first prong could not provide.

When the bottleneck does not show up in Prong |, the

use of Prong Il is Imminent.

When the 2 prongs meet, you did it!

QUEST
SOFTWARE

The Method Behind

the Madness:
Why iIs the OS Prong Needed?

The OWI does not detect CPU bottlenecks

The OWI does not detect memory bottlenecks

The statistics are measured in centiseconds (1/100 sec.)
— Until Oracle9i

= Even many sub-centisecond events need your attention

= /O, Memory or CPU bottlenecks can cause many

sub-centisecond events.

Finally, it helps you find out “bottlenecks external to Oracle”

QUEST
SOFTWARE

Performance Benchmarking

Duration of measurement depends on the duration
of the problem.

Need to benchmark performance before and after
any change implemented

Set TIMED STATISTICS=TRUE

Run utlbstat/utlestat

= Under $ORACLE HOME/rdbms/admin

= Generates a report called report.txt

QUEST
SOFTWARE

Performance Benchmarking

= STATSPACK Is preferred in Oracle 8i and beyond
= Check out spdoc.txt under $?/rdoms/admin for more
Information
= Need help in analyzing your BSTAT/ESTAT and
STATSPACK reports?

- Check out the online analyzer at http://www.oraperf.com
* Need a performance data collector?

- Check out Sparky at http://www.hotsos.com
- SQLab Vision’s Stealth Collect - at http://www.quest.com

QUEST
SOFTWARE

The Method Behind

the Madness:
The Oracle Prong (1)

= Start with v$system_event to determine the top wait events on

your system

= Drill down to v$session_event which provides session-level events
& v¥session_ wait which provides session-level waits

= Get all the SQL for the session in question - join v$session_wait,
v$session,v$sal

= Get the bottlenecking segment for this SQL by joining

vesession wait, dba_data_files, dba_extents

QUEST
SOFTWARE

The Method Behind

the Madness:
Using v$system event

= Columns

— Event

— Total Waits

— Total _Timeouts

— Time_waited — in centiseconds
— Avg_wait — also in centiseconds

QUEST
SOFTWARE

The Method Behind

the Madness:
Using v$session _event

= Same columns as in v$system_event with session
Information

= [nformation can change as the session metrics change

= As sessions log-off, the statistics are lost

= Remember to get the SQL executed by these sessions

QUEST
SOFTWARE

The Method Behind

the Madness:
Using v$session_wait

Complex view to understand
= \Wait statistics are reported as they happen
= Drills down to the actual problem...
Columns you should care about

— Sid, seg#, event, pl..p3

— state, walit_time, seconds_in_wait

QUEST
SOFTWARE

" pl-p3

The Method Behind

the Madness:

Using v$session wait

— Provides detalls on the wait events

— Examp
read” -
— Examp
the latc

e : For wait event “db file sequential
01 Is the file# and p2 is the block#
e. For wait event “latch free” - p2 Is

n# related to the latch# in v$latch

QUEST
SOFTWARE

The Method Behind

the Madness:
Understanding STATE

Waiting - Currently waiting for the event

Waited Unknown Time - timed_statistics is not set to
TRUE, I.e., Is set to FALSE

Waited Short Time - Waited for an insignificant amount
of time — Not really worth looking for roundl, take care of
this in round 2

Waited Known Time - If the resource that is waited
upon Is gained at a later time, the state changes from

Waiting to Waited Known Time

QUEST
SOFTWARE

The Method Behind

the Madness:
Understanding WAIT_TIME

* The value for this column is STATE dependent.
= |f state = (Waliting or Waited Unknown Time or
Waited Short Time) then
Wait_Time = Irrelevant;
End If;
= |f state = (Waited Known Time) then
Wait_Time = Actual walit time, in seconds;
End If;

QUEST
SOFTWARE

The Method Behind

the Madness:
Understanding SECONDS_ IN_WAIT

= The value for this column is STATE dependent.
= |f state = (Waited Unknown Time or
Waited Short Time or Waited Known Time) then
Seconds_In_Wait = Irrelevant;
End If;
= |f state = (Waiting) then
Seconds_In_Wait = Actual Wait Time in Seconds;
End If;

QUEST
SOFTWARE

The Method Behind

the Madness:
The OS Prong (I1)

= CPU Bottlenecks
= Memory Bottlenecks
= |/O Bottlenecks

QUEST
SOFTWARE

The Method Behind

the Madness:
Monitoring the OS : CPU

= sar-u 5 10000
— Yousr, %sys, %wio, %idle
— %wio and %sys typically should be < 10-15%
— 0% idle is OK, so long as %wio and %sys Is not
high and CPU run-queue < (2-3 * (# of CPUSs))
= Determine CPU Run Queue — vmstat -S 5 10000
(The column - “r" In the output)
= CPU Run Queue - top — Runnable

QUEST
SOFTWARE

The Method Behind

the Madness:
Monitoring the OS : 1/0

= sar—d 5 10000

= |/O requests should be evenly balanced

= |/O re-configuration should considered when only
some devices get most of the 1/O requests

= High disk queue numbers + high service times
=> |/O contention

= Check out a state-of-the-art I/O bottleneck diagnostic
tool - StorageXpert for Oracle at
http://www.guest.com/storage _xpert

QUEST
SOFTWARE

The Method Behind

the Madness:
Monitoring the O-S : Memory

= ymstat —-S 5 10000
— srshould be in and around 0
— swapins and swapouts should be 0
— Level of paging should also be at a minimum
= High I/O activity to the device where the swapfile or
swap partition lives
= Do not go overboard on SGA sizing just to get high
cache hit ratios

QUEST
SOFTWARE

The Method Behind

the Madness:
Tools for OS Monitoring

sar, mpstat, iostat

vmstat

Misc. Performance Monitors

Sun’s Monitoring Toolkit

Adrian’s Tool - Sun Solaris Only

Hewlett Packard’s - MeasureWare, GlancePlus

NT Performance Monitor

Various freeware utilities for NT at Sysinternals.com
- http://www.sysinternals.com

QUEST
SOFTWARE

The Holy Gralil of Oracle
Performance Tuning

[* For your own session */
alter session set timed_statistics=true; /* If not already set */
alter session set max_dump _file_size=unlimited; /* Prevent trace file truncation */

[* Set event for SQL Trace at the appropriate level

1 = Get Statistics -- Same as setting sql_trace = true

4 = Get Statistics and Bind Variable Values

8 = Get Statistics and Wait Event Information

12 = Get Statistics and Bind Variable Values, Wait Event Information */

alter session set events ‘10046 trace name context forever, level 12

[* Trace session application for the duration of the problem */

[* Find trace file using the SPID in the USER_DUMP_DEST directory.
Scan the file for all lines that begin with the word WAIT. Turn off tracing
completely */

alter session set SQL_ TRACE=FALSE;
QUEST
SOFTWARE

The Holy Gralil of Oracle
Performance Tuning

[* For someone else’s session - ldentify the session’s process ID (SPID) */
select S.Username, P.Spid, S.Sid, S.Serial#

from V$SESSION S, VSPROCESS P
where S.PADDR = P.ADDR and S.Username like ‘A%

[* Turn on the 10046 wait event for that session’s process */
oradebug setospid <SPID>

oradebug unlimit

oradebug event 10046 trace name context forever, level 12

[* Trace session application for the duration of the problem */

[* Find trace file using the SPID in the USER_DUMP_DEST directory.
Scan the file for all lines that begin with the word WAIT. Turn off tracing
completely */

exec doms_system.set_sql_trace in_session (SID,SERIAL#,FALSE);

QUEST
SOFTWARE

The Method Behind

the Madness:
Putting It all Together

= You look at v$system_event

= db file sequential reads Is the main wait event
= This walit event is usually for “index reads”
You drill down to v$session_wait

plis the file# and p2 is t
Using p1 and p2 join wit

ne block# waited on
n dba_extents and

dba data files, the cul

orit segment Is singled out

QUEST
SOFTWARE

The Method Behind

the Madness:
Putting It all Together

= Joining vdsession_wait to v$session to v$sal to get
the SQL causing and experiencing the bottleneck(s)

= Use the OS prong as appropriate for bottlenecks related
memory and CPU

QUEST
SOFTWARE

The Method Behind

the Madness:
Need More?

Read Craig Shallahammer’s paper on the subject

Read the Anjo Kolk’s YAPP paper, study the “Wait Events” in the
Oracle Reference Appendix

Read Cary Millsap’s paper on the subject

Read the Oracle Performance Tuning 101 (Osborne/McGraw-Hill
- Oracle Press)

www.oraperf.com - Anjo Kolk’s website and online report profiler
www.orapub.com - Craig’s website for papers/scripts/tools
www.hotsos.com - Cary Millsap’s website for papers/scripts/tools
www.evdbt.com - Tim Gorman’s website for papers/scripts
www.quest.com - Quest home page for various tools and solutions

QUEST
SOFTWARE

An Extreme Example - |

= 8GB SGA (4.5GB Shared Pool)

» Pre-tuning state — Init.ora was tuned like crazy. To attain a high
library cache-hit ratio memory was periodically added (in vain).
Bad response times with online queries. The system was
experiencing severe parsing hiccups.

= Bottleneck - Severe library cache latch contention

= Cause - Lack of bind variable usage

= Post-tuning state - On fixing the application, shared pool was

shrunk to 256MB. Pre-tuning state symptoms vanished. System

performance came right back.

QUEST
SOFTWARE

An Extreme Example - Il

= 6GB SGA (4GB Database Buffer Cache)

= Pre-tuning State - Init.ora parameters were all tuned. Cache-hit
ratios were nice and balmy (90s). But response time was terrible.
Very high CPU usage.

= Bottleneck — Severe contention for the cache buffers chains and
cache buffers Iru chain latches. Moderate contention on db file
sequential read and buffer busy waits.

= Cause - Correlated sub-queries, queries forced to use indexes,
lack of enough freelists on the tables with many concurrent inserts

= Post-tuning State - Fixed the application, added more freelists to

the relevant tables, shrunk DB buffer cache to 1GB, resurrected

the system from the performance graveyard.

QUEST
SOFTWARE

Why are you tuning?

= |s anyone complaining of performance?

= What are the wait events in your database?

= \What are the bottlenecks on your system?

= Have you “unearthed” any performance
problem?

= Are you running your life on cache-hit ratios?

= Are you suffering from CTD?

= |s It time for a drink or two?

QUEST
SOFTWARE

That’s a Wrap

Cache-hit ratios are useless numbers

The 2-pronged approach provides you more information
about system bottlenecks that any cache-hit ratio

You need a method that provides repeated and consistent
tuning success...you now know one!!!!

Remember the 80-20 rule

Setting specific tuning goals and ceasing the tuning effort
when the goals are attained requires discipline

QUEST
SOFTWARE

Contact Information

Gaja Krishna Vaidyanatha
Director, Storage Management Products, Quest Software Inc.
gaja@aquest.com or gajav@yahoo.com

QUEST
SOFTWARE

Questions and Answers

QUEST
SOFTWARE

~QUEST
SOFTWARE

www.quest.com

Business runs better on us

SSSSSSSS

