V\$ Views – Don't Leave \$HOME Without Them

Mike Bell

BMC Software

Will Do

- Look at some V\$ View Basics
- Talk about the underlying X\$ Tables
- ► Categorize The V\$ Views
- Uncover the undocumented init.ora parameters
- Present some useful scripts that are based on the V\$ Views
- Learn about a wild animal

Won't Do

- Provide a complete reference of the V\$ Views
- Show an explain tree (won't even mention it)
- Turn this into a tuning class
- **•** Bore the experienced DBA (hopefully not)
- Traumatize the new DBA (definitely not)

Presentation Objectives

Review V\$ View Fundamentals

V\$ View Creation and Access Methods

Categorize the V\$ Views

- Provide Useful V\$ View Scripts
 - Memory Allocation
 - Problem Queries
 - Media Recovery
 - Show the Value of Each Script

What Are The V\$ Views?

- Unfiltered, unbiased looks into the heart of the Oracle database
- Supplement to the data dictionary
- Basis for database performance monitoring and tuning
- Key to moving from the average to the expert DBA

How Are V\$ Views Created?

- V\$ Views are created from the X\$ tables when the database is created
- The CATALOG.SQL and CATLDR.SQL scripts are executed
- ◆ A V_\$ view is created from the V\$ view
- ◆ Old synonyms for the V\$ views are dropped
- ♦ New V\$ synonyms are created on the V_\$ view

How's That Again?

The V\$ Views that are accessed by SYSTEM are actually synonyms that point to the V_\$ Views that are views of the original V\$ Views based on the X\$ Tables!

Here's an excerpt from the CATALOG.SQL Script

create or replace view v_\$database as select * from v\$database;

drop public synonym v\$database;

create public synonym v\$database for v_\$database;

grant select on v_\$database to select_catalog_role;

How Are They Accessed?

- ◆ SELECT access only
- Can't grant access to V\$ views even as SYS
- You can grant access to the underlying V_\$ views

*Tip – It's better to grant access to the V_\$ Views to a specific user than to give users the SYS or SYSTEM passwords.

What Are X\$ Tables?

- X\$ tables are fixed tables created in memory at database startup
- Store up-to-date information on database activity
- Cannot be dropped
- Cannot be updated (except by Oracle)
- Only accessible by SYS

The X\$ V\$ Connection

- **A**X\$ tables are very cryptic
- V\$ views created on X\$ tables for readability
- Several X\$ tables and columns are not referenced by V\$ views
- V\$ views are created on one or more X\$ tables

The X\$ V\$ Connection (cont'd)

- X\$ tables and V\$ views are only accessible by SYS
- 183 V\$ views and 265 X\$ tables in Oracle 8.1.6.0.0
- 227 V\$ views and 352 X\$ tables in Oracle 9.0.1.1.1

Listing the X\$ Tables and V\$ Views

select type,name from
v\$fixed_table order by type,name;

TYPE NAME

TABLE X\$ACTIVECKPT TABLE X\$BH VIEW GV\$ACCESS VIEW GV\$ACTIVE_INSTANCES VIEW V\$ACCESS VIEW V\$ACTIVE_INSTANCES

X\$ Tables That Make up The V\$ Views

select * from v\$fixed_view_definition where
view_name ='GV\$FIXED_TABLE';

VIEW_DEFINITION
<pre>select inst_id,kqftanam, kqftaobj, 'TABLE', indx from x\$kqfta</pre>
union all
select inst_id,kqfvinam, kqfviobj, 'VIEW', 65537 from x\$kqfvi
union all
select inst_id,kqfdtnam, kqfdtobj, 'TABLE', 65537 from x\$kqfdt

Cheetahs Can Run a Sustained Speed of?

- 25 miles-an-hour
- 45 miles-an-hour
- 65 miles-an-hour
- 100 miles-an-hour

65 miles-an-hour

Backups, Archiving, And Recovery

► V\$BACKUP, V\$ARCHIVE, V\$RECOVER_FILE, etc.

Caches

► V\$ROWCACHE, V\$LIBRARYCACHE, etc.

Control Files

► V\$CONTROLFILE, V\$CONTROLFILE_RECORD_SECTION

◆ SQL Statements and Cursors

▶ V\$SQL, V\$SQLAREA, V\$SQLTEXT, V\$OPEN_CURSOR, etc.

Database/Instance

► V\$DATABASE, V\$INSTANCE, V\$VERSION, etc.

SQL*Loader Direct Path Load Option

► V\$LOADCSTAT, V\$LOADPSTAT, V\$LOADSTAT

Fixed Views

► V\$FIXED_TABLE, V\$FIXED_VIEW_DEFINITION

◆ General

► V\$TIMER, V\$TYPE_SIZE, V\$_SEQUENCES

♦ I/O

► V\$FILESTAT, V\$WAITSTAT

Latches/Locks

► V\$BUFFER_POOL, V\$LATCH_MISSES, V\$LOCK, etc.

MTS/OPS

► V\$CIRCUIT, V\$DISPATCHER, V\$QUEUE, etc.

Overall System Performance

► V\$SYSTAT, V\$SORT_USAGE, etc.

V\$View Categories

Parallel Query

► V\$EXECUTION, V\$PQ_SESSTAT, etc.

Oracle Parameters

► V\$PARAMETER, V\$NLS_PARAMETERS, etc.

Redo Logs

► V\$LOG, V\$LOGFILE, V\$LOGHIST

Rollback Segments

► V\$ROLLSTAT, V\$TRANSACTION

Security/Privileges

► V\$ENABLED_PRIVS, V\$PWFILE_USERS

Sessions

► V\$SESSION, V\$PROCESS, etc.

282 Undocumented Parameters in 8.1.6.0.0 432 Undocumented Parameters in 9.0.1.1.1

select indx,ksppinm from x\$ksppi where
substr(ksppinm,1,1) = '_';

INDX KSPPINM

- 0 _trace_files_public
- 2 _latch_miss_stat_sid
- 3 _max_sleep_holding_latch
- 4 _max_exponential_sleep
- 190 _corrupted_rollback_segments

Warning Warning Warning

Oracle's Warning

Warning: Information about the dynamic performance views is presented for completeness only; this information does not imply a commitment to support these views in the future.

Murphy's Warning

Warning: All undocumented parameters should be extensively tested before and after use.

Goal #1: Memory Allocation

The Goal is to Ensure That The Correct Amount of Memory is Allocated to Oracle.

The RDBMS buffer and working storage area Contains buffers for:

- Data Buffers
- Redo Buffers
- Data Dictionary / SQL / Procedures / Packages information

Created at instance startup

If DB_BLOCK_BUFFERS is low, users will not have enough memory to operate efficiently.

If DB_BLOCK_BUFFERS is high, your system may begin to swap and may come to a halt.

Determine if DB_BLOCK_BUFFERS Is Set Too Low:

select

1 -(sum(decode(name,'physical reads',value,0))/ (sum(decode(name,'db block gets', value,0)) + (sum(decode(name, 'consistent gets',value,0))))) * 100 "Read Hit Ratio"

from v\$sysstat;

<u>Read Hit Ratio</u> 98.415926

Use X\$bh to Get State of SGA

select from group by	state, count(*) x\$bh state;	i i
<u>STATE</u>	<u>COUNT(*)</u>	<u>Status (fyi)</u>
0	920	free
1	1553	available
3	27	being used
DB_BLOCK	<pre>K_BUFFERS available</pre>	= 1553
DB BLOCK	K BUFFERS being use	ed = 27

DB_BLOCK_BUFFERS never used = 920

Hold On A Minute!

There's Some Misleading Information Here!

selectstate, count(*)fromx\$bhwhere state = 1andIrba_seq <> 0Group by state;

<u>COUNT</u> 38

Some blocks listed at state = 1 can still be in use by an existing query!

Select

decode(state,0, 'FREE',

- 1, decode(Irba_seq,0,'AVAILABLE','BEING USED'),
- 3, 'BEING USED', state) "BLOCK STATUS", count(*)

From x\$bh

group by decode(state,0,'FREE',

1,decode(Irba_seq,0, 'AVAILABLE','BEING USED'),

3, 'BEING USED', state);

<u>BLOCK STATUS</u>	<u>COUNT(*)</u>
AVAILABLE	1515
BEING USED	65
FREE	920

Contains:

Pre-parsed database procedures
Pre-parsed database triggers
Recently parsed SQL
Recently parsed PL/SQL requests

This is the memory allocated for the library and data dictionary cache

If the SHARED_POOL_SIZE is set too low then you will not get the full advantage of your DB_BLOCK_BUFFERS.

- select sum(pins) Executions, sum(pinhits) "Execution Hits", ((sum(pinhits) / sum(pins)) * 100) phitrat, sum(reloads) Misses, ((sum(pins) / (sum(pins) + sum(reloads))) * 100) hitrat
- from v\$librarycache;

Executions	Execution Hits	<u>PHITRAT</u>	<u>Misses</u>	<u>HITRAT</u>
12810	11651	90.952381	48	99.6266

Contain:

- Table definitions
- Column definitions
- View definitions
- Sequence definitions
- Role definitions
- Authorizations & Permissions

Data dictionary cache miss ratio:

This would be a good Ratio and would probably not require action in this area.

Determine the Memory Left in the SHARED_POOL_SIZE:

col value for 999,999,999,999 heading "Shared Pool Size"

col bytes for 999,999,999,999 heading "Free Bytes"

select to_number(v\$parameter.value) value, v\$sgastat.bytes,

(v\$sgastat.bytes/v\$parameter.value)*100 "Percent Free"

- from v\$sgastat, v\$parameter
- where v\$sgastat.name = 'free memory'
- and v\$parameter.name = 'shared_pool_size'
- and v\$sgastat.pool = 'shared pool';

Shared Pool Size	Free Bytes	Percent Free
20,480,000	12,778,732	62.3961523

Determine the Memory Left in the SHARED_POOL_SIZE:

select *
from v\$sgastat
where name = 'free memory'
and pool = 'shared pool';

POOLNAMEshared pool free memory

Free Bytes 12,759,956

If there is free memory on a consistent basis, then there is no need to increase this parameter.

Memory Left - SHARED POOL:

select sum(ksmchsiz) Bytes, ksmchcls Status from x\$ksmsp group by ksmchcls;

Free Bytes	STATUS
1,024,000	R-free
40	R-freea
3,176,368	free
6,130,576	freeabl
11,631,584	perm
1,297,996	recr

What Do These STATUS Values Mean?

Oracle does not state what the STATUS values mean. Here is a table of possible descriptions courtesy of Rich Niemiec.

r-free	This is SHARED_POOL_RESERVER_SIZE
r-freea	This is probably reserved memory that
	has been used but freeable
free	This is the amount of contiguous free memory available
freeabl	This is probably memory that has been used but is freeable
perm	This is free memory not yet moved to the free area for use
recr	Not quite sure – possibly reserved memory for Oracle

The Oldest Fossils of The Cheetah (from about 10,000 years ago) were found where?

- North America
- Asia

Goal #2: Identify Problem Queries

The Goal is to Identify SQL Statements That Are Causing Database Performance Degradation.

Identifying Which Statements Are The Top Disk Readers (Physical)

Select disk_reads, sql_text from v\$sqlarea Where disk_reads > 10000 order by disk_reads desc;

DISK READS

<u>SQL TEXT</u>

12,987select order#,columns,types from
orders12,987select order#,columns,types from
orderswhere substr(orderid,1,2)=:111,131select custid, city from customer
where city = 'DETROIT'

Identifying Which Statements Are The Top Buffer Readers (Logical)

select buffer_gets, sql_text
from v\$sqlarea
Where buffer_gets > 200000
order by buffer_gets desc;

Buffer gets

300,219

SQL TEXT

select order#,cust_no, from
orders where division = '1'

Finding The Hot Procedures

1. Set Up The Report Headings

col PTYP format a15 heading 'PL/SQL Type' col OBJ format a40 wrap heading 'Name' col EXES format 999,990 heading 'Execs'

2. Select From The V\$ Views

```
select PTYP, OBJ , 0 - EXEM EXES
from (select distinct EXEM, PTYP, OBJ
from ( select O.TYPE PTYP, O.OWNER || '.'
|| O.NAME OBJ,
0 - O.EXECUTIONS EXEM
from V$DB_OBJECT_CACHE O
```


3. Filter The Results

where O.TYPE in ('FUNCTION', 'PACKAGE', 'PACKAGE BODY', 'PROCEDURE' , 'TRIGGER'))) where ROWNUM <= &1

4. Execute The Query

@hotprocs.sql 5

PL/SQL Type Name

Execs

PACKAGE		SYS.DBMS_APPLICATION_INFO	267
PACKAGE	BODY	SYS.DBMS_APPLICATION_INFO	266
PACKAGE		SYS.DBMS_OUTPUT	39
PACKAGE	BODY	SYS.DBMS_OUTPUT	38
PACKAGE		SYS.DBMS_SPACE	1

1. Set Up The Report Headings

col CTYP heading 'Command Type' col OBJ format a32 wrap heading 'Table' col EXES format 999,990 heading 'Execs' col GETS format 99,999,990 heading 'Buff Gets' col ROWP format 99,999,990 heading 'Rows Proc'

Finding the Hot Tables (cont'd)

2. Select From The V\$ Views

```
select CTYP, OBJ, 0 - EXEM EXES, GETS, ROWP
from (select distinct EXEM, CTYP, OBJ, GETS, ROWP
     from (select decode (S.COMMAND_TYPE
                 , 2, 'Insert into ', 3, 'Select from '
                 , 6, 'Update of ', 7, 'Delete from '
                 , 26, 'Lock of ') CTYP
            , O.OWNER || '.' || O.NAME OBJ
            , sum(0 - S.EXECUTIONS) EXEM
            , sum(S.BUFFER_GETS) GETS
            , sum(S.ROWS_PROCESSED)
                                          ROWP
from V$SQL S, V$OBJECT_DEPENDENCY D
           , V$DB_OBJECT_CACHE O
```


3. Filter The Results

```
where S.COMMAND_TYPE in (2,3,6,7,26)
         and D.FROM ADDRESS = S.ADDRESS
         and D.TO OWNER = O.OWNER
         and D.TO_NAME = O.NAME
         and O.TYPE = 'TABLE'
       group by S.COMMAND_TYPE
          , O.OWNER
          , O.NAME))
where ROWNUM <= &1
```

Finding the Hot Tables (cont'd)

@hottbls.sql 10

Command Type	<u>Table</u>	<u>Execs</u>	Buff Gets	Rows Proc
Select from	SYS.USER\$	2,122	895,172	25,485
Select from	SYS.OBJ\$	2,005	730,363	21,538
Insert into	BMC.MIG_ROWS	1,000	1,140	1,000
Update of	BMC.MIG_ROWS	1,000	53,260	1,000
Insert into	BMC.ITEM	880	1,878	880
Insert into	BMC.EMPLOYEE	608	1,312	608
Select from	SYS.CDEF\$	584	1,771	232
Select from	SYS.IND\$	558	180,488	4,756
Select from	SYS.JOB\$	516	572	0
Select from	SYS.TAB\$	510	275,021	8,010

Finding Miscellaneous Stats

Hot Stats STATS.SQL

col NAME format a55 heading 'Statistic' col VALUE format 999,999,990 heading 'Value' select NAME, VALUE from V\$SYSSTAT where NAME like '%&1%' order by NAME

Finding Miscellaneous Stats (cont'd)

STATS.SQL

@stats.sql redo

<u>Statistic</u>	<u>Value</u>	
redo blocks written	82	
redo buffer allocation retries	0	
redo entries	147	
redo entries linearized	0	
redo log space requests	0	
redo log space wait time	0	

Finding Miscellaneous Stats (cont'd)

STATS.SQL

@stats.sql sort

Statistic

sorts (disk) sorts (memory) sorts (rows) <u>Value</u>

0 120 739

Of The 12,400 Cheetahs Remaining in The World, How Many Remain In The Wild?

1,000

♦ 12,400

2,400

Have You Ever Gotten This Error?

SQL> startup ORACLE instance started.

ORA-01113: file 11 needs media recovery

ORA-01110: data file 11: D:\ORACLE\ORADATA\B816\SFI_DEBUG_1.DBF'

Some people restore the database multiple times after receiving this error and still can not resolve the problem.

What has happened is the one or more of the tablespaces were in backup mode when the database was shutdown.

Since the tablespace was in BACKUP mode, the datafile SCN number is not consistent with the last SCN of the database.

1. Query The V\$BACKUP & V\$DATAFILE Views to Identify The Datafiles.

SQL> SELECT NAME, V\$BACKUP.STATUS

- 2 FROM V\$BACKUP, V\$DATAFILE
- **3 WHERE V\$BACKUP.FILE# = V\$DATAFILE.FILE#**
- 4 and V\$BACKUP.STATUS = 'ACTIVE';

NAME

STATUS ACTIVE

D:\ORACLE\ORADATA\B816\SFI_DEBUG_1.DBF

2. Generate The Alter Database Statement

For Multiple Files:

3. Execute The Alter Database Statement

SQL> alter database datafile 'D:\ORACLE\ORADATA\B816\SFI_DEBUG_1.DBF' end backup; Database altered. SQL> alter database open; Database altered.

DBXray

Real-time Performance Monitoring

SQL Explorer

Collect/Tune/Test SQL Statements

Space Expert

 Identify Storage Problems/Recommend and Implement Solutions

PATROL for Oracle

♦ 24x7 Database Monitoring

SQL Programmer

♦ SQL Development

SQL Backtrack

Efficient Backups and Guided Recoveries

Oracle Performance Tuning Tips & Techniques

Expert Technical Knowledge at the Turn of a Page. Tune and tailor you Oracle7, or Oracle8 system to perform at its peak using this one-of-a-kind reference, designed for every Oracle database administrator, programmer, and user.

About the Presenter:

Mike Bell is a Technical Product Manager for Oracle for BMC Software, a major provider of Enterprise Monitoring and Management software. Mike can be reached at <u>michael bell@bmc.com</u>.

References:

Oracle Design; Dave Ensor & Ian Stevenson; O'REILLY Oracle Performance Tuning Tips & Techniques; Richard J. Niemiec; Oracle Press Oracle PL/SQL Tips and Techniques, Joseph C. Trezzo; Oracle Press "Oracle Scripts Every DBA Should Know" by Joseph C. Trezzo; TUSC "The V\$ Views; A DBA's Best Friend" by Joseph C. Trezzo; TUSC "Performance Tuning for the Expert; Others Will Require Oxygen!" by Richard J. Niemiec; TUSC Cheetah Conservation Fund: The WILD Foundation PO Box 1380 Ojai, CA, USA e-mail - info@cheetah.org

Neither BMC Software nor the presenter guarantee this document to be error-free. The opinions expressed in this presentation are the presenter's and may not reflect the opinions of BMC Software or of any living person. Please provide comments and/or questions to michael_bell@bmc.com.