
--AUTHOR : Anunaya Shrivastava

--DATE :18-APR-2000

--USAGE:

--PURPOSE:

--DEPENDENCIES : DBMS_SQL package

--

--Acknowledgement : Suganthi Natrajan

--

-- GENERAL NOTES : This package processes the records from a table.

-- 1. Groups the records

-- 2. Applies the group sum function

-- 3. Returns the data in a pl/sql table

Group actions are required in data processing development environments. Usually, we apply group functions on the dataset and make groups by using the GROUP BY clause. The Group functions such as average AVG, SUM, COUNT etc do not provide all the actions that are required in the business programming environment. The group functions also have severe restrictions in SQL because they can be used only with GROUP BY clause. However, in the data manipulations requirements /data massaging operations sometime we want to apply actions to groups that are not provided by the actions provided by the standard group functions. This is especially true when a logical group records spans over many physical records.

A typical case of the aforesaid mention scenario is any transactional table. In such a scenario one would like to accumulate all the physical records that make up a logical record and then apply the action to entire logical record.

This article discusses my implementation of Grouping algorithm using PL/SQL. You can easily modify the code it to suit your needs.

How to Group?

To overcome the challenges of applying actions to group of records we need to first group them and then hold the group and then apply an action. I have tried to define a GROUPS package. The logic for putting this package is simple. This approach relies on ordering the records in a superset of records, It then scans the records, if previous record in the record is same as (or belongs to the group) then it groups it and performs an action. In our case apply the operator "+" for each member in the group. We can also try any other action that is deemed by the business requirements. Hence we can process a subset group as a single logical record that is actually spanning several physical records.

In this approach we group records on the basis of the value of the column to be grouped upon. This approach is explained by a simple illustration. Let us consider a small table with two columns. Let us call this table, alphabet with two columns letter, position having data as :

letter
position

a
1

b
2

c
3

a
1

d
4

Now that we have this record group we want to accumulate the records into distinct groups. The approach here is to sort the records in a cursor such as select c1as select letter, position from alphabet order by letter. The cursor internal picture after sorting looks like this:

letter
position

a
1

a
1

b
2

c
3

d
4

When we manipulate this cursor we can form groups by following logic in plain English.

In a ordered data set

IF previous record = current record then

 form a group and perform group action

This approach slices the data in required sub sets of groups. The action in this case is addition for the group so the desired output is :

Letter
position

a
 2

b
 2

c
 3

d
 4

Implementing the GROUPING logic in PL/SQL

In coding for the GROUPING logic in PL/SQL, I have used DBMS_SQL package to dynamically load a PL/SQL table of two columns. One of the columns carries the value to group and the column carries the value of the groups. These groups are formed by concatenation of datavalues. Also in the dynamic sql package the dataset is ordered too before loading it into PL./SQL table. I then loop the Pl/SQL table to check whether the grouping columns data value is similar in the previous record; if it is similar then I perform the group action. The first time previous record variable is null and last group record stays there with the loop execution finishing. In order to process the last record we have to repeat the action outside the loop to be executed once in the end.

Using the GROUPS Package

The GROUPS package specification shown in Listing 1 is easy to use in any code development effort (see groups.pkg for the full implementation). For example, you are developing a huge package and one of the requirements is that you want the groups ‘ line to be multiplied by a factor that you are picking up from the database associated with that group. So you can add a function convert_factor to the main GROUPS function and call it in your PL/SQL construct. The SUMS procedure here displays the output of the Group action of summation. The SUMS program unit can also be made into a function returning PL/SQL table and the PL/SQL table can be used further into the program.

You can also use the GROUPS package in anonymous PL/SQL block as shown below

Begin

 GROUPS.SUMS(‘emp’,’Sal’,’deptno’);

End;

The above block will display the out of groups of deptno with sum of salary for the deptno. If you don't want to simply display the information, call the function version of sums and retrieve the index-by table:

DECLARE
 mytab groups.grouper_tab;

Begin

 mytab := GROUPS.SUMS(‘emp’,’Sal’,’deptno’);

End;

An implementation of this approach is developed in the code package called GROUPS. The action performed in our case is addition/concatenation depending upon the datatype if it number it adds the column else it concatenates. An example of the usage of this can be in a scenario where we have a INVOICE table like this:

Invoice Number

Invoice Description

Invoice Amount

A1234

This is invoice for cust#1 05/01/00

100

A1234

This another charge 05/05/00

200

A1234

Another charge on 05/07/00

300

B4000

 There is invoice for cust# 2 -05/07/00

400

B4000

This is another charge -05/08/00

500

The return from the groups function is a pl/sql table holding groups with the action performed on the group. This table output is displayed via standard package - the DBMS_OUTPUT.PUT_LINE. This pl/sql table can be used in any programming effort where we need to group records and perform a group action and return the records after the action is performed.

The output of the calls to GROUPS.SUMS would be following:

Example 1 (Sums the Invoice Amount for Invoice numbers)

Begin

GROUPS.SUMS(‘INVOICE’,’Invoice_Amount’,’Invoice_Number’);

End;

OUTPUT

A1234

600

B4000

900

Example 2 (Concatenates the Invoice Description for Invoice numbers)

Begin

GROUPS.SUMS(‘Invoice’,’Invoice_description’, ‘Invoice_number’);

End;

OUTPUT

A1234
This is invoice for cust#1 05/01/00 This another charge 05/05/00 Another charge on 05/07/00

B4000

There is invoice for cust# 2 -05/07/00 This is another charge -05/08/00

Conclusions

The Groups function described in the article gives you an easy way to group data within PL/SQL program rather than resorting to the Group By clause or using group functions. The GROUPS package can be used as is in your PL/SQL development effort or you can use any new actions (functions/procedure) in the package just like the SUMS procedure.

Anyway you use it; you will find it to be a handy method to apply group actions with resorting to GROUP BY clause and group functions that cannot handle your business requirements.

LISTING 1

/* see groups.pkg */

CREATE OR REPLACE PACKAGE groups

IS

--

--AUTHOR : Anunaya Shrivastava

--DATE :18-APR-2000

--USAGE:

--PURPOSE:

--DEPENDENCIES : DBMS_SQL package

--

--Acknowledgement : Suganthi Natrajan

--

-- GENERAL NOTES : This package processes the records from a table.

-- 1. Groups the records

-- 2. Applies the group sum function

-- 3. Returns the data in a pl/sql table

--

-- record to define the structure of the table.

 TYPE grouper IS RECORD(

 col1 VARCHAR2 (32000),

 col2 VARCHAR2 (32000));

-- table of records to hold the values from the dynamic cursor

 TYPE grouper_tab IS TABLE OF grouper

 INDEX BY BINARY_INTEGER;

---Procedure performing group action

 PROCEDURE sums (

 table_name IN VARCHAR2,

 group_column IN VARCHAR2,

 grouping_columns IN VARCHAR2,

 p_delimiter IN VARCHAR2 DEFAULT NULL

);

 g_datatype VARCHAR2 (200);

END groups;

/

CREATE OR REPLACE PACKAGE BODY groups

IS

---Private function to build the query string based on parameters.

 FUNCTION query_build (

 table_name IN VARCHAR2,

 group_column IN VARCHAR2,

 grouping_columns IN VARCHAR2

)

 RETURN VARCHAR2

 IS

 BEGIN

 RETURN 'SELECT ' || group_column || ',' ||

 REPLACE (grouping_columns, ',', '||') ||

 ' From ' ||

 table_name ||

 ' Order by ' ||

 grouping_columns;

 END query_build;

---Private function to return a dynamic PL/SQL table after accepting query string as an input

--- This function uses DBMS_SQL to excute the cursor that is formed at runtime.

 FUNCTION load_temp_tab (query_string IN VARCHAR2)

 RETURN grouper_tab

 IS

 c INTEGER;

 grouping_columns VARCHAR2 (32000);

 col_to_group VARCHAR2 (32000);

 exec_cur INTEGER;

 v_query_string VARCHAR2 (32000);

 group_tab groups.grouper_tab;

 next_row NUMBER;

 BEGIN

 c := DBMS_SQL.open_cursor;

 DBMS_SQL.parse (c, query_string, DBMS_SQL.v7);

 DBMS_SQL.define_column (c, 1, col_to_group, 2000);

 DBMS_SQL.define_column (c, 2, grouping_columns, 2000);

 exec_cur := DBMS_SQL.execute (c);

 LOOP

 IF DBMS_SQL.fetch_rows (c) = 0

 THEN

 EXIT;

 ELSE

 next_row := NVL (next_row, 0) + 1;

 DBMS_SQL.column_value (

 c,

 1,

 group_tab (next_row).col1

);

 DBMS_SQL.column_value (

 c,

 2,

 group_tab (next_row).col2

);

 END IF;

 END LOOP;

 DBMS_SQL.close_cursor (c);

 RETURN group_tab;

 END load_temp_tab;

--This private procedure processes the pl/sql table and makes groups and performs

-- group actions

 PROCEDURE process_temp_tab (

 temp_tab grouper_tab,

 l_delimiter IN VARCHAR2 DEFAULT NULL

)

 IS

 v_current_rec VARCHAR2 (32000);

 v_prev_rec VARCHAR2 (32000);

 next_row NUMBER := 0;

 v_total NUMBER := 0;

 v_totaled_group VARCHAR2 (32000);

 tot_tab grouper_tab;

 v_concat_total VARCHAR2 (32000);

 BEGIN

 FOR i IN temp_tab.FIRST .. temp_tab.LAST

 LOOP

 v_current_rec := temp_tab (i).col2;

 IF (v_prev_rec IS NULL)

 OR (v_prev_rec = v_current_rec)

 THEN

 IF g_datatype = 'NUMBER'

 THEN

 v_total := v_total + temp_tab (i).col1;

 ELSE

 v_concat_total :=

 v_concat_total || l_delimiter ||

 temp_tab (i).col1;

 END IF;

 v_totaled_group := v_current_rec;

 ELSE

 next_row := NVL (tot_tab.LAST, 0) + 1;

 IF g_datatype = 'NUMBER'

 THEN

 tot_tab (next_row).col1 := v_total;

 tot_tab (next_row).col2 := v_totaled_group;

 ELSE

 tot_tab (next_row).col1 := v_concat_total;

 tot_tab (next_row).col2 := v_totaled_group;

 END IF;

 IF g_datatype = 'NUMBER'

 THEN

 v_total := 0;

 v_total := v_total + temp_tab (i).col1;

 ELSE

 v_concat_total := NULL;

 v_concat_total :=

 v_concat_total || l_delimiter ||

 temp_tab (i).col1;

 END IF;

 v_totaled_group := v_current_rec;

 END IF;

 v_prev_rec := v_current_rec;

 END LOOP;

 next_row := NVL (tot_tab.LAST, 0) + 1;

 IF g_datatype = 'NUMBER'

 THEN

 tot_tab (next_row).col1 := v_total;

 tot_tab (next_row).col2 := v_totaled_group;

 ELSE

 tot_tab (next_row).col1 := v_concat_total;

 tot_tab (next_row).col2 := v_totaled_group;

 END IF;

 FOR i IN tot_tab.FIRST .. tot_tab.LAST

 LOOP

 DBMS_OUTPUT.put_line (

 tot_tab (i).col2 || '-----' || tot_tab (i).col1

);

 END LOOP;

 END process_temp_tab;

---Public function to validate the table and find the datatype

---Also display by various calls to the private functions

---the grouped output with the group actions of Summation performed.

 PROCEDURE sums (

 table_name IN VARCHAR2,

 group_column IN VARCHAR2,

 grouping_columns IN VARCHAR2,

 p_delimiter VARCHAR2 DEFAULT NULL

)

 IS

 v_query_string VARCHAR2 (32000);

 v_tab grouper_tab;

 v_table_name VARCHAR2 (60);

 v_column_name VARCHAR2 (60);

 BEGIN

 v_table_name := UPPER (table_name);

 v_column_name := UPPER (group_column);

 BEGIN

 SELECT data_type

 INTO g_datatype

 FROM all_tab_columns

 WHERE table_name = v_table_name

 AND column_name = v_column_name;

 EXCEPTION

 WHEN NO_DATA_FOUND

 THEN

 raise_application_error (

 -25000,

 'Did not find anything'

);

 WHEN TOO_MANY_ROWS

 THEN

 raise_application_error (-25001, 'Too many rows');

 WHEN OTHERS

 THEN

 raise_application_error (-25002, 'Others Errors');

 END;

-------Process the grouping logic------------------------

 v_query_string :=

 query_build (

 table_name,

 group_column,

 grouping_columns

);

 v_tab := load_temp_tab (v_query_string);

 process_temp_tab (v_tab, p_delimiter);

 END sums;

END groups;

/
