Achieving PL/SQL Excellence Seminar Demonstration Files

Copyright 1998 Steven Feuerstein, feuerstein@revealnet.com

This document describes many of the files you will find in the demo.zip file in the RevealNet PL/SQL Pipeline Archives. The demo.zip file is intended as a complement to the training materials of Steven Feuerstein's seminars:

· Advanced Techniques

· Best Practices

· Built-in Packages

Visit Oracle Education or the PL/Solutions web site (www.plsolutions.com) for more information about these seminars.

Key to File Extensions

Extension
Description

sps or pks
Package specification

spb or pkb
Package body

pkg
Package specification and body in one file (for demonstration purposes only)

sp
Stored procedure

sf
Stored function

tst
Test script

sql
SQL script

ins
Install/initialize data structures

Table of Files

Note: This list is (and probably will always be) under construction and not necessarily comprehensive. Check the contents of demo.zip

File Name
Description

allcurs.pkg
allcurs.tst hccurs.sql

Programs that compare hard-coded cursors (hccurs.sql) with cursor variables (allcurs.pkg and allcurs.tst).

ascdates.sql

ascdates2.sql
Shows how to emulate an ORDER BY of dates in a PL/SQL table.

authid.sql

savelives.sql
Demonstrates the Oracle8.1 AUTHID functionality so that you can run someone else's code under your own privileges.

bidir.pkg bidir.tst
Package and test script that offer a glimpse of the "bi-directional" cursor like capabilities possible with index-by tables.

cmt.tst
Script that demonstrates the added value of a layer of code over COMMIT (in this case, the PLVcmt package of PL/Vision).

constant.sps
An example of a package specification that does not require a package body.

dbg.*
Documentation and software for a prototype DBMS_PIPE-based debugger. Allows you to set breakpoints and activate/deactivate session-specific breakpoints.

defer.sql
Demonstrates the use of a nested block to defer CPU and memory overhead of allocating variables until definitely needed.

dumplong.pkg dumplong.tst
Package and test script that demonstrates the use od DBMS_SQL to extract long values from database tables.

dyncalc.sf
Generic calculator function, a handy demonstration of dynamic PL/SQL.

dynins.tst
Compare the performance in Oracle7-style (1 row at a time) and Oracle8-style (bulk processing) dynamic SQL inserts.

dynplsql.sp
Generic program to execute a dynamic PL/SQL block.

dynplsql.tst
Tests the overhead of dynamic PL/SQL

dynseq.tst
Compare performance of obtaining next sequence value with static and dynamic SQL.

dynvar.pkg

dynvar.tst
Package that implements dynamic variable read/write operations (called "indirect referencing" in Oracle Forms); similar to COPY and NAME_IN of Oracle Forms.

effdsql.tst
Demonstrate inefficiency of unecessary opening parsing and binding in dynamic SQL.

embedded.sql

embedded.tst

Creates objects needed to compare performance of straight SQL and calling PL/SQL functions in SQL.

empfetch.pkg
Package that demonstrates bulk querying in Oracle8 with dynamic SQL.

empfetch.tst
Procedure that demonstrates efficiency of package created by empfetch.pkg.

empins.sql
Recreates the emp table and installs the standard 14 rows we all know and love.

emplu.pkg
Packages show efficiency of querying from cached PL/SQL tables instead of going to the database each time.

emplu.tst
Procedure that demonstrates efficiency of package created by emplu.pkg.

errpkg.pkg
Generic, reusable exception handling package. See the PL/Vision PLVexc package for a more thorough implementation of these techniques.

exc.tst

exc2.tst

exc3.tst
Demonstrates flexibility of exception handling package, in particular the bail out capability of PLVexc. The exc3.tst file shows how you can substitute values in a template message string.

excquiz1-6.sql
The exception handling quizzes from the Best Practices seminar.

exec_fetch.tst
Demonstrates too many rows handling by DBMS_SQL.EXEC_AND_FETCH.

explimpl.tst
Compares performance of implicit and explicit queries.

fileexc.sql
Exception handling section you can plug right into programs using UTL_FILE that allows you to "translate" the user defined exceptions into understandable messages.

filepath.pkg

filepath.tst
Package that demonstrates how you can add a path feature to UTL_FILE.

fileupd.sp

fileupd.dat

fileupd.tst
Procedure that utilizes Oracle8 array processing in DBMS_SQL to perform an update from the bulk contents of a data file (fileupd.dat)

filexist.sf
Function that returns true if the specified file exists (that is, if it can be opened for READ purposes successfully).

getnext.sp
Procedure to get the next line from a file using UTL_FILE.GET_LINE. Rather than raise an EOF exception it returns a Boolean flag.

givebonus1.sp

givebonus2.sp
Example of the kind of code you would write once you have a set of encapsulation packages in place (givebonus1 does not use the encapsulated code, givebonus2 does).

globals.doc

globals.pll

globals.fpp
Document and Oracle Forms library that show how to build a general interface to :GLOBAL variables, hiding any direct references. The fpp contains an example of a Forms package built around a single :GLOBAL variable.

ifdec.sql
Comparison of the performance of DECODE versus a function called in SQL that uses the IF statement. Heads up: DECODE is faster, but not by much!

ifdec.sql
Compares performance of DECODE and PL/SQL IF statement (in a function) inside SQL.

infile.sf
An INSTR-like function for files.

instr.sql
Demonstrates flexibility of INSTR.

intab.sp
A "SELECT * FROM tab" for PL/SQL, demonstration of Method 4 Dynamic SQL.

isnum.sf

isnum.sp

isnum2.sp
Compare implementation and performance of three "is number" functions.

jsp*.sql
Examples of creating and loading Java stored procedures.

locmod.sp
Example of using local/nested modules to keep executable sections small and readable, and also avoid code redundancy.

log.pkg
Generic logging package that demonstrates how to dynamically change the log from table to screen to pipe.

lostlog1.sql lostlog2.sql

lostlog3.sql
Demonstrates how you can lose log information when you write to a database table. You will need to install the rb package (rb.pkg) to run the third script.

mismatch.sql
Demonstrates the way that mismatch errors occur with strong and weak REF CURSOR types.

modbuild.all
All the versions of a function that returns twice the original string, showing the evolution of a program from a relatively primitive, difficult-to-use state, to a well-structured, flexible module.

multref.sf
Compares an implementation of a function relying on multiple RETURNs with the same function rewritten to use a single RETURN.

namednot.sql
Demonstration of features of named notation.

nametoke.sql
Demonstrates usage of DBMS_UTILITY.NAME_TOKENIZE.

nested.sql
Compares performance of executing nested cursor loops with static and dynamic SQL.

nestrec.sql
Example of defined a nested record structure, with a demonstration of the right and wrong ways to populate the record.

nthline.sf
Function that returns the Nth line in a file using UTL_FILE.

nullloop.sql
Demonstrates error when you execute a FOR loop from NULL to NULL.

openprse.sf

openprse.pkg
Stand-alone function and package demonstrating how to combine the dynamic SQL OPEN_CURSOR and PARSE operations into a single step. The package version also optimizes the use of existing cursors.

ovrhead.sql
Tests overhead of calling procedures and functions.

p_and_l.pkg
Creates a package that demonstrates the value of hiding data in the body, particularly so that you can build a trace on that variable. It uses the package created by the watch.pkg package.

parallel.pkg
Similar to parallel.pkg, but more simplistic in terms of the jobs being executed.

parallel.sql
Script that creates several objects to demonstrate the efficiencies gained by code parallelization with DBMS_PIPE.

parmval.sql
Demonstrates use of DBMS_UTILITY.GET_PARAMETER_VALUE (Oracle8).

pkgcur.pkg

pkgcur.tst
Demonstrates need to build procedures to open and close packaged cursors.

pkggen.sql
Example of a quick-and-dirty encapsulation package/individual procedures for a table.

pkgvar.pkg
pkgvar.tst
Examines overhead of passing a PLSQL table rather than making it available as a global. Need to run pkgvar.pkg first.

pky.tst
Demonstrate encapsulation of primary key views behind the PLVpky package.

plsint.tst
Examines efficiency of using PLS_INTEGER compared to INTEGER and BINARY_INTEGER.

plsqlloops.sql plsqlloops.sp
Try different approaches to scanning contents of a PL/SQL table.

print.pkg
Another substitute for DBMS_OUTPUT.PUT_LINE, with a simple, recursive implementation that allows the display of very long strings.

pssize.sql
Script that displays size of PL/SQL objects in shared pool

rae.tst
Tests the usage of the RAISE_APPLICATION_ERROR built-in.

ranking.pkg
Triggers and package to perform ranking. Demonstration of use of PL/SQL tables to avoid mutating table trigger errors.

rb.pkg
Package to perform rollbacks to savepoints and set savepoints, saving the savepoint names in a PL/Vision list.

recompile8.sql
Utility that will automatically and comprehensively recompile all specified objects in your schema. Provided by Solomon Yakobson

recompile_job.sql
Version of recompile8 that runs as an hourly job and writes the results to a log table.

recrep.sf
Example of recursion used to make a repetition of a string.

salstat.sf

Single function to retrieve any group value for the sal column in the emp table.

showei.sql
A script that shows all the programs containing the phrase "EXCEPTION INIT".

showemps.tst
Compares static and dynamic SQL needed to read through emp table.

showjava.sql
Shows information about the uploaded Java sources, binaries, and resources.

showsrc.sql
SQL*Plus script to show a range of lines of source code for the specified program.

splitpkg.pkg
Demonstrates how to split up a large package into multiple smaller packages, while maintaining integrity and the same public interface.

syscache.sql
Example of using DBMS_PIPE to set up a global cache area, with programs requesting data and a listener sending the data back to them.

tab2file.sp
Demonstrate of high-level abstract language to manipulate data in different repositories (PLVrep), in this case, moving contents of a table (any table) to a file.

tabcount.sf
A function that uses DBMS_SQL to return the number of rows in the specified table.

tabhaslong.sf
A function which returns TRUE if a table has a LONG column; demonstration of power of encapsulation of PLVcols.

te_employee.*
Example of encapsulation package for the employee table (created by PL/Generator).

thanks.sql
Script that demonstrates the use of PLVdate to set all Thanksgiving Days to non-business days.

totcomp.sf

totcomp1.pkg

totcomp2.pkg
Demonstration of calling PL/SQL functions from within SQL statements.

trcfunc.sql
A function which serves as a trace mechanism to be called in an SQL statement.

twice.sql
A function that returns a doubling or twice of a string. Demonstrates assertion routine techniques and usability approaches in arguments.

updnumval*.sp
Various scripts demonstrating Method 2 dynamic SQL techniques for updating dynamic numeric columns in a table.

using_dual.sql
A review of when and how the dual table should be used in today's Oracle.

utlflexc.sql
Exception section that traps UTL_FILE errors and translates the user-defined exceptions into displayed messages showing you precisely which error occurred.

valstd.pkg
Package providing a utility you can use to validate standards which follow this format: use (or do not use) certain constructs of the PL/SQL language.

watch.pkg
The watch package implements a basic trace package and allows you to write to screen or pipe. Demonstrates use of package toggles and windows. The p_and_l package utilizes watch.

whichsch.sql
Scripts that demonstrates the execute-as-owner model and the complications that can arise when the stored code you execute relies on DBMS_SQL to run dynamically-constructed SQL.

Achieving PL/SQL Excellence demonstration files - filedesc.doc - 1

