
Flashback Enhancements 1.1

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.
Dave Anderson, SKILLBUILDERS

Oracle10g Flashback
Enhancements

An introduction to the enhancements
and new features related to Oracle

flashback technology.

Author: Dave Anderson

Release Date: October 2004

Last Revision Date: January 2005

Flashback Enhancements 1.2

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.2

Lesson Agenda
Very quick review of Oracle9i flashback
10g Enhancements

Flashback Query
Flashback Version Query
FLASHBACK_TRANSACTION_QUERY View

10g New Features
Flashback Table
Flashback Database

Setup for new features
AUM
Flash Recovery Area

In this lesson you will learn about the Oracle10g flashback-related features.

First, we will briefly review the Oracle9i flashback query feature (hopefully you have
already had a chance to learn about or use 9i flashback query). We will also briefly
discuss Automatic Undo Management (AUM, introduced with Oracle9i) because 9i
and many 10g flashback-features require it. Then you will learn about the 10g
enhancements, including flashback version query and flashback transaction query.

Then I will present new flashback-related features called “flashback table” and
“flashback database”. Finally, because the flashback database feature requires it, I
introduce something called the “Flash Recovery Area” (new with Oracle10g).

Author’s Note: Technically, I consider flashback version query and flashback
transaction query enhancements to Oracle9i’s flashback query feature. I consider
Oracle10g’s flashback table and flashback database new flashback-related
features.

Flashback Enhancements 1.3

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.3

Flashback Evolution
9i provided

Session-level flashback
DBMS_FLASHBACK

Statement (and sub-statement) flashback
SQL “AS OF” clause

Can compare table to a
previous version of itself

9i R1

9i R2

SQL> select a.lastname, a.total_purchase, b.total_purchase
2 from sales a , sales AS OF timestamp(sysdate - 1) b
3 where a.cust_no = b.cust_no
4 and a.total_purchase != nvl(b.total_purchase, 0);

LASTNAME TOTAL_PURCHASE TOTAL_PURCHASE
------------ -------------- --------------
ANDERSON 55000
DASWANI 55000

SQL> select a.lastname, a.total_purchase, b.total_purchase
2 from sales a , sales AS OF timestamp(sysdate - 1) b
3 where a.cust_no = b.cust_no
4 and a.total_purchase != nvl(b.total_purchase, 0);

LASTNAME TOTAL_PURCHASE TOTAL_PURCHASE
------------ -------------- --------------
ANDERSON 55000
DASWANI 55000

Amount
yesterday

Amount
today

Oracle9i Release 1 introduced the concept of “flashback”. With 9i Release 1, we
have session-level flashback query ability – via the DBMS_FLASHBACK PL/SQL
package. For example, after enabling flashback at the session level, the
subsequent queries show the data as it existed 1 day ago:
SQL> exec dbms_flashback.enable_at_time(systimestamp-1)

PL/SQL procedure successfully completed.

SQL> select count(*) from customer;

COUNT(*)

14
SQL> select count(*) from employee;

COUNT(*)

10
SQL> exec dbms_flashback.disable

PL/SQL procedure successfully completed.

Notes for this slide continue on the next page…

Flashback Enhancements 1.4

© 2005 SkillBuilders, Inc. V1.1

Notes continued from the previous page…

Oracle9i Release 2 went a big step further with the “FROM table AS OF” clause.
This provides the ability to flashback at the statement or even sub-statement level.
As the example above shows, one table in a join can be flashed back, while the
other can be current; thus, we can see that sales yesterday to customers Anderson
and Daswani were null, and today they are 55,000.

Flashback Enhancements 1.5

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.5

Flashback Setup
Flashback query and flashback table* require AUM
and sufficient UNDO
LINUX> show parameter undo_

NAME TYPE VALUE
------------------------------------ ----------- ---------
undo_management string AUTO
undo_retention integer 172800
undo_tablespace string UNDOTBS1

1 select file_name, bytes
2 from dba_data_files
3* where tablespace_name = 'UNDOTBS1'

FILE_NAME BYTES
-- ----------
+ASM_DISK_GROUP1/orcl/datafile/undotbs1.265.1 209715200
+ASM_DISK_GROUP1/orcl/datafile/undotbs1.295.17 104857600

LINUX> show parameter undo_

NAME TYPE VALUE
------------------------------------ ----------- ---------
undo_management string AUTO
undo_retention integer 172800
undo_tablespace string UNDOTBS1

1 select file_name, bytes
2 from dba_data_files
3* where tablespace_name = 'UNDOTBS1'

FILE_NAME BYTES
-- ----------
+ASM_DISK_GROUP1/orcl/datafile/undotbs1.265.1 209715200
+ASM_DISK_GROUP1/orcl/datafile/undotbs1.295.17 104857600

Try to
retain
undo
for 48
hours

Insure sufficent
space for the

retention setting

With Oracle9i and Oracle10g, administrators need to implement Automatic Undo
Management (AUM) to use flashback query. AUM is the Oracle9i feature that
replaces manual management or rollback segments. (Actually, I have tested
flashback query with manual undo and it works. However, you do not have explicit
control over the retention time. Therefore, for that reason and several other
reasons outside the scope of this lesson, you should migrate to AUM.)

* The Oracle10g flashback table feature requires AUM too – unless you are
recovering a dropped table – then it uses the “recyclebin”. You will learn more
about the flashback table feature later in this lesson.

AUM is implemented with initialization parameters shown above. Set
UNDO_MANAGEMENT=AUTO (versus MANUAL) and set the UNDO_RETENTION
parameter to the desired amount of time you want to retain undo. Undo retention
affects flashback query (i.e. how far back do you want to support flashback?) and
long running queries that require a consistent image of data (retaining undo for the
duration of the long running query can reduce or eliminate ORA-01555 “Snapshot
too old” errors). In the example shown above, the database will attempt to keep
undo records for a minimum of 48 hours.

Notes for this slide continue on the next page…

Flashback Enhancements 1.6

© 2005 SkillBuilders, Inc. V1.1

However, if undo space is required for the undo of ongoing transactions, and no
free space is available in the undo tablespace, Oracle will prematurely expire undo
records, i.e. overwrite records younger than the UNDO_RETENTION value. This
can cause flashback queries to fail or ORA-01555 “snapshot too old” errors.

The second query shown above reveals the name and size of the datafiles
associated with my undo tablespace. (You will notice that my UNDO datafile names
start with “+ASM_DISK_GROUP1”. This is a sure sign I am using ASM to control
my datafiles. Refer to the lesson on Automatic Storage Management for more
information on ASM.)

Supplemental Notes

Insure that the undo tablespace has sufficient space to accommodate the undo
generated during the specified retention time. For assistance sizing the undo
tablespace, refer to the supplied script UNDO_FILE_SIZE.SQL, which contains a
Metalink query that uses the historical undo usage on your server to estimate the
required tablespace size. Oracle Enterprise Manager can also estimate the Undo
tablespace size requirement.

If you are not familiar with dynamically adjusting initialization parameters, here’s an
example. To setup for 48 hours of undo
LINUX> alter system set undo_retention=172800

2 comment='48 hours of undo for flashback support'

3 scope=both;

System altered.

Flashback Enhancements 1.7

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.7

Setup: Guaranteed Retention
Oracle10g new feature
Guaranteed retention of UNDO for specified retention
period

Can help debugging applications
Can eliminate snapshot too old messages

Careful
DML can fail if insufficient UNDO space

Use on
CREATE UNDO TABLESPACE or ALTER TABLESPACE

LINUX> alter tablespace undotbs1 retention guarantee;
Tablespace altered.

LINUX> alter tablespace undotbs1 retention guarantee;
Tablespace altered.

If you want to guarantee that undo records will be kept for your specified retention
time, consider using the Oracle10g “Guaranteed Retention” feature. Enabling this
feature will cause Oracle to unequivocally honor the UNDO_RETENTION
parameter – at the expense of failing ongoing database operations if sufficient undo
space is not available.

By setting the UNDO_RETENTION parameter value equal to the longest running
query (elapsed time) and enabling guaranteed retention, you can reduce or possibly
eliminate “snapshot too old” errors.

In addition to helping to eliminate “snapshot too old” errors, it can be useful for
debugging. For example, assume your application consumes ten hours of elapsed
time and sometime during that period the application introduces bad data. By
guaranteeing retention for the duration of debugging process, you’ll be able to
flashback query for the entire run of the application and determine when the
anomaly was introduced.

This feature is implemented via the RETENTION GUARANTEE parameter on
CREATE UNDO TABLESPACE and ALTER TABLESPACE statements.

Turn off retention guarantee with the following statement:
LINUX> alter tablespace undotbs1 retention noguarantee;

Flashback Enhancements 1.8

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.8

Flashback Query
Enhancements

Oracle10g enhancements to Flashback
Query include:

Flashback Version Query
FLASHBACK_TRANSACTION_QUERY view

Release 1 of Oracle10g provides two enhancements to flashback query that we will
discuss next:

Flashback Version Query – Access to old versions of table data.

The FLASHBACK_TRANSACTION_QUERY view – Access to undo SQL
statements, user who made the change and other details about changes made
to table data.

Flashback Enhancements 1.9

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.9

Flashback Version Query...
Show all “versions” of data between two
SCN’s or timestamps

Access to previous versions of a row
Requires undo

See UNDO_RETENTION
“Version” is transaction-based

COMMIT creates a version
ROLLBACK does not

The Flashback Version Query feature let’s us see the values of table data as it
changed over time. We request the database show us all versions between two
points in time (in the form of timestamps) or between two system change numbers
(SCN’s). Another way of describing this feature is to say it provides access to old or
previous versions of data.

This feature requires that the undo records for the transactions that changed the
table data are available. Remember that the UNDO_RETENTION parameter is
used to help preserve undo records for the specified period of time.

The concept of a “version” of a row is transaction-based: a version is created when
a transaction involving a row commits. So, if there have been 10 transactions that
have changed a row – and 8 were committed – between yesterday and today, and
you request all versions of that row in that time period, you will see 8 rows of output
– one for each version. Changes that were rolled back do not generate a version.

Flashback Enhancements 1.10

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.10

…Flashback Version Query...

Query table with new SQL operator
“VERSIONS BETWEEN”
Part of the FROM clause

Optionally include new pseudo-columns
VERSIONS_STARTTIME / _STARTSCN

Time or SCN when row version was created
Can use in Flashback Table to undo changes

VERSIONS_OPERATION
Type of operation that created row version

Example next…

Flashback Version Query is implemented via extensions to SQL. This includes:

A FROM clause sub-clause called VERSIONS BETWEEN. In addition to the
example shown on the next page, you can find more information on VERSIONS
BETWEEN in Chapter 19 of the Oracle10g SQL Reference.

New pseudo-columns including VERSIONS_STARTTIME (contains the
timestamp when a version was created) and VERSIONS_OPERATION (i.e.
how did the value in this version get this way? I for INSERT, U for UPDATE,
etc.). Refer to Chapter 3 of the SQL Reference and Chapter 15 of the
Oracle10g Application Developers Guide – Fundamentals for complete
details on the VERSIONS pseudo-columns.

Flashback Enhancements 1.11

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.11

...Flashback Version Query...
DAVE@LINUX> select c2, versions_starttime, versions_endtime,
2 versions_startscn , versions_endscn,
3 versions_operation, versions_xid
4 from system.test
5 versions between timestamp
6 to_timestamp('11-SEP-04 12.02.00.000000000 PM',
7 'dd-mon-yy hh.mi.ss.ff PM')
8 and systimestamp
9 where c1 = '1'
10 order by versions_startscn nulls first;

C2 VERSIONS_STARTTIME VERSIONS_ENDTIME VERSIONS_STARTSCN
---- ----------------------- ------------------------ -----------------
a 11-SEP-04 12.01.55 PM
b 11-SEP-04 12.01.55 PM 11-SEP-04 12.01.55 PM 988714
c 11-SEP-04 12.01.55 PM 11-SEP-04 12.02.04 PM 988716
d 11-SEP-04 12.02.04 PM 11-SEP-04 12.02.17 PM 988719
x 11-SEP-04 12.02.17 PM 988730

DAVE@LINUX> select c2, versions_starttime, versions_endtime,
2 versions_startscn , versions_endscn,
3 versions_operation, versions_xid
4 from system.test
5 versions between timestamp
6 to_timestamp('11-SEP-04 12.02.00.000000000 PM',
7 'dd-mon-yy hh.mi.ss.ff PM')
8 and systimestamp
9 where c1 = '1'
10 order by versions_startscn nulls first;

C2 VERSIONS_STARTTIME VERSIONS_ENDTIME VERSIONS_STARTSCN
---- ----------------------- ------------------------ -----------------
a 11-SEP-04 12.01.55 PM
b 11-SEP-04 12.01.55 PM 11-SEP-04 12.01.55 PM 988714
c 11-SEP-04 12.01.55 PM 11-SEP-04 12.02.04 PM 988716
d 11-SEP-04 12.02.04 PM 11-SEP-04 12.02.17 PM 988719
x 11-SEP-04 12.02.17 PM 988730

New psuedocolumns

NULL in ENDTIME means
“x” is the current value

Use the VERSIONS BETWEEN clause to code a “flashback versions query”. In
this example we see that between the times specified there were 5 versions of one
row in existence (why one row? see that on line 9 the query includes a filter on
primary key).

The VERSIONS_STARTTIME / STARTSCN value is the time or SCN when the row
version was created. It can be used in a flashback table operation to undo
application changes (flashback table is presented later in this lesson).

Columns not shown in slide due to space constraints:
VERSIONS_ENDSCN V VERSIONS_XID
--------------- - ----------------

988714
988716 U 0500050044030000
988719 U 040006000B040000
988730 U 03000E00270C0000

U 0900050015030000

In this example, all of the row versions where created by UPDATE statements (see
the “U” value). The VERSIONS_XID column contains the transaction id and can be
used to find the username redo SQL, undo SQL, among other things.

Notes for this slide continue on the next page…

The transaction ID can be used to locate
the REDO and UNDO SQL. Refer to the

section on
FLASHBACK_TRANSACTION_ QUERY

later in this lesson.

Flashback Enhancements 1.12

© 2005 SkillBuilders, Inc. V1.1

See supplied script flashback_version_query.sql for a working copy of the example
shown in this slide.

Supplemental Notes

Oracle10g supports MINVALUE and MAXVALUE in the VERSIONS BETWEEN
clause. These expressions give access to the “oldest and most recent data
available.” (Source: Oracle10g SQL Reference.) For example:

select * from t2 versions between scn

minvalue and maxvalue

Flashback Enhancements 1.13

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.13

...Flashback Version Query
Users need privileges to flashback

LINUX> grant flashback, select on system.test to dave;

Grant succeeded.

LINUX> grant flashback, select on system.test to dave;

Grant succeeded.

Privilege to flashback query, flashback
version query and flashback table

DBAs will need to give flashback privileges to desired users. The FLASHBACK
object privilege, introduced with Oracle9i, provides the ability to:

use the AS OF clause to flashback a table, view or materialized view

the VERSIONS BETWEEN clause to extract available versions of data

use the FLASHBACK TABLE statement (discussed later in this lesson).

In addition to the examples above, you can also grant:

Execute on DBMS_FLASHBACK for session-level flashback query

The system privilege ‘flashback any table’ to use flashback query / flashback
version query or flashback table on any table the user has select privilege on.

Flashback Enhancements 1.14

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.14

FLASHBACK_TRANSACTION_
QUERY View

Mine (audit) undo records for details on changes
Easier than log miner utility

Get XID from flashback version query
LINUX> exec print_table('select logon_user, undo_sql -
> from flashback_transaction_query -
> where xid = ''0700010059020000'' ')
LOGON_USER : SYSTEM
UNDO_SQL : delete from "SYSTEM"."TEST"

where ROWID = 'AAALquAABAAAaIiAAA';

LINUX> exec print_table('select logon_user, undo_sql -
> from flashback_transaction_query -
> where xid = ''0700010059020000'' ')
LOGON_USER : SYSTEM
UNDO_SQL : delete from "SYSTEM"."TEST"

where ROWID = 'AAALquAABAAAaIiAAA';

LINUX> grant select any transaction to dave;

Grant succeeded.

LINUX> grant select any transaction to dave;

Grant succeeded. User needs this
privilege

Get XID from
flashback version

query

It is easy to see details about changes made to tables with the
FLASHBACK_TRANSACTION_QUERY view. This can be helpful for auditing (i.e.
who changed my table?), debugging and even performance analysis (how often is a
table being changed?).

The SELECT ANY TRANSACTION privilege allows a user to see details about past
transactions by querying the new (10g) FLASHBACK_TRANSACTION_ QUERY
view.

Note that – in my tests - the performance of querying the
FLASHBACK_TRANSACTION_QUERY view is very poor. I have opened an iTAR
on Metalink and will post any findings or solutions when they are available (see
www.skillbuilders.com).

See supplied script flashback_transaction_query.sql for a working copy of this code.

Supplemental Notes

The SELECT ANY TRANSACTION privilege also allows a user to see details about
transactions by using the log miner view V$LOGMNR_CONTENTS (9i).

Flashback Enhancements 1.15

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.15

Flashback Table Concepts
Turn back hands of time for one or more
tables
Two uses

Recover from DROP TABLE
Uses “recycle bin” concept
See “TO BEFORE DROP” option

Recover from application or user changes
Uses available UNDO
See “TO SCN” and “TO TIMESTAMP” options

Deletes and re-inserts rows

Use the Flashback Table feature to “turn back the hands of time” for a table. (Note
that I first heard this feature described this way by Tom Kyte.)

It can be used to:

Recover a dropped table. This type of recovery uses the new recycle bin
concept which we explore in this section of the lesson.

Recover from application changes. This type of recover requires UNDO.

This feature is implemented with the FLASHBACK TABLE statement, which we
will see examples of in this section of the lesson.

Flashback Enhancements 1.16

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.16

Flashback Table Prep
Enable row movement on table
Grant privileges to desired user(s)

SYSTEM@LINUX> alter table test enable row movement;

Table altered.

SYSTEM@LINUX> grant flashback on test to dave;

Grant succeeded.

SYSTEM@LINUX> grant alter, select, update, delete,
2 insert on system.test to dave;

Grant succeeded.

SYSTEM@LINUX> alter table test enable row movement;

Table altered.

SYSTEM@LINUX> grant flashback on test to dave;

Grant succeeded.

SYSTEM@LINUX> grant alter, select, update, delete,
2 insert on system.test to dave;

Grant succeeded.

There are two things you need to do before using the flashback table feature:

Enable row movement. This is because – if you are recovering from (i.e.
undoing) application changes – rows will be inserted, updated and deleted as
part of the flashback table process. Row movement allows the ROWID to
change. Note that this is required even if the table is not partitioned.

Get necessary privileges. This includes the flashback object privilege (or the
system privilege FLASHBACK ANY TABLE) and all the DML privileges listed
above.

Flashback Enhancements 1.17

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.17

Flashback Table: Undo
Application Changes

DAVE@LINUX> select dbms_flashback.get_system_change_number
from dual;

X

1057181

DAVE@LINUX> flashback table system.test to timestamp
2 systimestamp - interval '30' minute;

DAVE@linux3> exec dbms_stats.gather_table_stats
(ownname=>'system', tabname=>'test')

PL/SQL procedure successfully completed.

DAVE@LINUX> select dbms_flashback.get_system_change_number
from dual;

X

1057181

DAVE@LINUX> flashback table system.test to timestamp
2 systimestamp - interval '30' minute;

DAVE@linux3> exec dbms_stats.gather_table_stats
(ownname=>'system', tabname=>'test')

PL/SQL procedure successfully completed.

Undo the last 30
minutes of changes

Optional, but can
undo flashback if
you know SCN

prior to flashback

Update statistics after
flashback table

Here we see the Flashback Table feature in action. In this example, my goal is to
undo the last 30 minutes of changes. You can also flashback to a system change
number, which you can get from a flashback version query (see the
VERSIONS_STARTSCN pseudocolumn shown earlier in this lesson) .

Note that the FLASHBACK TABLE statement is a DDL statement and is not
rollback-able. However, if you capture the system change number prior to
executing the statement, you can undo the first FLASHBACK TABLE statement by
executing a second FLASHBACK TABLE statement, flashing back to the system
change number in affect just prior to the first flashback. For example:
DAVE@LINUX> flashback table system.test to scn 1057181;

Flashback complete.

Collect statistics after executing FLASHBACK TABLE; statistics are not updated
during the operation and will be stale.

See the supplied script flashback_table.sql for a demonstration of flashback table.

Notes for this slide continue on the next page…

Flashback Enhancements 1.18

© 2005 SkillBuilders, Inc. V1.1

Supplemental Notes

There are several additional things about flashback table that I discovered during
my testing that might help you:

Flashback table honors referential integrity constraints. For example, if you
attempt to flashback a parent table, and the result of the operation would leave
constraint violations, the flashback will fail. However, you can flashback a
referential group of tables. For example:

flashback table t1, t2 to scn 7930536;

You cannot flashback a table involved in an active transaction (all tables are
locked during the flashback operation).

Flashback table under Release 10.1.0.2 leaves a temporary table called
SYS_TEMP_FBT. You can drop this table to cleanup the FLASHBACK TABLE
process. (I think this is known bug #3076151, but lately I’ve been unable to find
this bug documented on Metalink.)

There are several things I learned from Oracle docs:

Triggers are disabled during the flashback operation, then enabled when the
operation is complete. You can override this with the ENABLE TRIGGERS
clause on the FLASHBACK TABLE statement. However, I’m not sure why you
would want to take the performance hit of reexecuting the triggers on data
already in the table. (Tom Kyte suggests that perhaps it might be useful to
enable auditing-type triggers.)

Indexes are kept in sync by the flashback operation. However, indexes are
never created nor dropped by a flashback operation.

Flashback Table cannot be used with the following types of objects:
Clusters
Materialized Views
Advanced Queuing tables
Dictionary tables
Remote Tables
Object Types
Nested Tables
Partitions/Sub-partitions

Flashback Enhancements 1.19

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.19

Flashback Table: Recover
from DROP TABLE

Dropped tables and dependent objects aren’t really
dropped
Renamed

“BINuniquestring”
This is the “recycle bin” concept
Objects actually dropped when

Space needed
Could be right away, might be there “forever”

Tablespace dropped
Recycle bin purged
PURGE clause used on DROP

In Oracle10g, the DROP TABLE statement, by default, actually renames a table – it
does not drop it. The renamed table becomes part of the “recycle bin”. The recycle
bin is really nothing more than a bunch of dropped (renamed) tables and dependent
indexes, sitting in their original location, albeit with strange system-defined names.

The table will reside in the recycle bin until tablespace storage becomes
constrained, the tablespace is dropped or the recycle bin is purged.

You can specify the new PURGE clause on the DROP TABLE, which causes the
table to actually be dropped immediately. (See the example later in this lesson.)

In addition to the examples in this lesson, refer to Chapter 14 of the Oracle10g
Administrator’s Guide and Metalink Note 266413 for more information on “Using
Flashback Drop and Managing the Recycle Bin”.

Notes for this slide continue on the next page…

Flashback Enhancements 1.20

© 2005 SkillBuilders, Inc. V1.1

Supplemental Notes

Objects in the SYSTEM tablespace are not put into the recycle bin. Only objects in
non-system locally managed tablespaces are put in the recycle bin when dropped.

You can disable the recycle bin for the database (i.e. revert to Oracle9i treatment of
DROP TABLE):

DAVE@linux3> alter system set "_recyclebin"=false;

System altered.

Limitations

External tables, materialized views and bitmap join indexes do not appear in the
recycle bin and therefore cannot be recovered with the Flashback Table feature.

Flashback Enhancements 1.21

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.21

Flashback Table: Recover
from DROP

Recover from DROP TABLE or unwanted application
changes

SQL> drop table big;
Table dropped.

SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME
---------------- ------------------------------
BIG BIN$Kq3scQsDQP+jkI0atdsqqQ==$0

SQL> drop table big;
Table dropped.

SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME
---------------- ------------------------------
BIG BIN$Kq3scQsDQP+jkI0atdsqqQ==$0

OBJECT TYPE DROP TIME
------------ -------------------
TABLE 2004-08-19:11:40:00

OBJECT TYPE DROP TIME
------------ -------------------
TABLE 2004-08-19:11:40:00

Table is recorded in “recycle bin”

SQL> flashback table big to before drop;
Flashback complete.

SQL> flashback table big to before drop;
Flashback complete.

Easy and fast to recover table

SQL> drop table t purge;
Table dropped.

SQL> drop table t purge;
Table dropped.Table segment remains

unless PURGE used

See also the optional
“RENAME TO” clause

This example demonstrates the recycle bin and recovering a dropped table. Note
that after table BIG is dropped, it appears in the recycle bin. Note the use of the
new 10g SQL*Plus command SHOW RECYCLEBIN.

The FLASHBACK TABLE TO BEFORE DROP statement recovers the dropped
table.

The FLASHBACK TABLE statement supports an optional RENAME TO clause,
which will rename the table as it recovers it from the recycle bin.

Refer to the supplied script flashback_dropped_table.sql for a working example of
the FLASHBACK TABLE . . . TO BEFORE DROP statement.

Supplemental Notes

Note also that dropped external tables do not appear in the recycle bin and
therefore cannot be recovered with the Flashback Table feature.

Even if you recover a parent table (in a referential set), the dependent foreign keys
are not recovered. You will have to rebuild them manually.

Flashback Enhancements 1.22

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.22

Repeat Un-Drop
SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
T BIN$KbsjpLROTs6+eGOGqifipQ==$0 TABLE 2004-09-19:14:59:30
T BIN$y0AR2dYXSnC0bRn+vJTF0Q==$0 TABLE 2004-08-19:16:52:54

SQL> flashback table t to before drop;
Flashback complete.

SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
T BIN$y0AR2dYXSnC0bRn+vJTF0Q==$0 TABLE 2004-08-19:16:52:54
SQL> rename t to t_old;
Table renamed.

SQL> flashback table t to before drop;
Flashback complete.

SQL> show recyclebin
SQL>

SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
T BIN$KbsjpLROTs6+eGOGqifipQ==$0 TABLE 2004-09-19:14:59:30
T BIN$y0AR2dYXSnC0bRn+vJTF0Q==$0 TABLE 2004-08-19:16:52:54

SQL> flashback table t to before drop;
Flashback complete.

SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
T BIN$y0AR2dYXSnC0bRn+vJTF0Q==$0 TABLE 2004-08-19:16:52:54
SQL> rename t to t_old;
Table renamed.

SQL> flashback table t to before drop;
Flashback complete.

SQL> show recyclebin
SQL>

If a table was dropped, a new version created, dropped again, you will have multiple
occurrences in the recycle bin. Multiple FLASHBACK TABLE statements, with a
RENAME table in-between (or use the RENAME TABLE option on the
FLASHBACK TABLE statement) will get you back to the original version of the
dropped table.

Supplemental Notes

The SQL*Plus command SHOW RECYCLEBIN only shows dropped tables (not
their dependents). Use SELECT * FROM USER_RECYCLEBIN to see the entire
contents of your recycle bin. Query DBA_RECYCLEBIN to see all recycle bin
objects – from all schemas.

Flashback Enhancements 1.23

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.23

Purging Recycle Bin
SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
T2 BIN$cfmTndAnQk+junRG6hCngg==$0 TABLE 2004-09-19:14:59:28
T_AUDIT BIN$Fx+nQHXcR4qgr4fSc18QiQ==$0 TABLE 2004-08-23:15:52:29
T_AUDIT BIN$mPxGfYd8QJ+sLvSNPLszZg==$0 TABLE 2004-08-23:15:51:13
T_AUDIT BIN$7sKuyR6YR7KM4Bc7mzewiQ==$0 TABLE 2004-08-23:15:19:19
T_AUDIT BIN$ZD1sowFXTt6T7uFsmDt4aw==$0 TABLE 2004-08-23:13:50:33
T_AUDIT BIN$STuYtaPCQcC0eEhgZd+HRw==$0 TABLE 2004-08-23:13:49:26
T_AUDIT BIN$Em072EijQIilk8I5QhHFrA==$0 TABLE 2004-08-23:13:48:08
T_AUDIT BIN$nuPfG+vCT8OsZDi4lJ0jdA==$0 TABLE 2004-08-23:13:05:05

SQL> purge recyclebin;
Recyclebin purged.

SQL> show recyclebin
SQL>

SQL> show recyclebin
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
T2 BIN$cfmTndAnQk+junRG6hCngg==$0 TABLE 2004-09-19:14:59:28
T_AUDIT BIN$Fx+nQHXcR4qgr4fSc18QiQ==$0 TABLE 2004-08-23:15:52:29
T_AUDIT BIN$mPxGfYd8QJ+sLvSNPLszZg==$0 TABLE 2004-08-23:15:51:13
T_AUDIT BIN$7sKuyR6YR7KM4Bc7mzewiQ==$0 TABLE 2004-08-23:15:19:19
T_AUDIT BIN$ZD1sowFXTt6T7uFsmDt4aw==$0 TABLE 2004-08-23:13:50:33
T_AUDIT BIN$STuYtaPCQcC0eEhgZd+HRw==$0 TABLE 2004-08-23:13:49:26
T_AUDIT BIN$Em072EijQIilk8I5QhHFrA==$0 TABLE 2004-08-23:13:48:08
T_AUDIT BIN$nuPfG+vCT8OsZDi4lJ0jdA==$0 TABLE 2004-08-23:13:05:05

SQL> purge recyclebin;
Recyclebin purged.

SQL> show recyclebin
SQL>

PURGE clears all
objects from the bin

The new SQL statement PURGE removes (drops) all objects in the recycle bin and
frees the space used. PURGE RECYCLEBIN purges the current user’s recycle bin.

There are many options for the PURGE statement including

PURGE TABLE table-name

PURGE INDEX index-name

PURGE RECYCLEBIN

PURGE DBA_RECYCLEBIN (Purges the bin of every user. Requires SYSDBA
privilege.)

PURGE TABLESPACE tspace-name [USER username]

Note that the PURGE statement is not rollback-able. Refer to the Oracle10g SQL
Reference for more details on the PURGE statement.

Flashback Enhancements 1.24

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.24

Flash Recovery Area:
Concepts

Optional storage area for backup-related files
Online and archive logs
RMAN backups

Default location for RMAN backups if configured
Flashback logs

Required for FLASHBACK DATABASE

“Automates management of backup-related
files”

Convenient directory structure
Auto-delete obsolete files when space needed

Next topic is FB Database…

The Flash Recovery Area, introduced with Oracle10g, is a storage area for many
types of recovery-related files. This includes flashback logs, required for the
FLASHBACK DATABASE statement. You will learn more about flashback logs and
the FLASHBACK DATABSE statement later in this lesson. It also optionally
includes redo logs and RMAN backups.

The Oracle documentation says the Flash Recovery Area “Automates management
of backup-related files.” I have discovered this to mean:

Oracle creates a convenient and meaningful directory structure to the files store
within it.

Oracle automatically removes obsolete logs when space is required.

RMAN provides a convenient technique for backing up the recovery area to
tape. See the “BACKUP RECOVERY AREA” command.

Flashback Enhancements 1.25

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.25

Flash Recovery Area:
Configuration

Set location
Separate from datafiles

Set space limit
Maximum space dedicated to flashback area

Set retention limit
How far back can we flashback database?

NAME VALUE
----------------------------- ---------------------------------
db_recovery_file_dest /mnt/mickeymantle
db_recovery_file_dest_size 10G
db_flashback_retention_target 1440
log_archive_dest_1 LOCATION=USE_DB_RECOVERY_FILE_DEST

NAME VALUE
----------------------------- ---------------------------------
db_recovery_file_dest /mnt/mickeymantle
db_recovery_file_dest_size 10G
db_flashback_retention_target 1440
log_archive_dest_1 LOCATION=USE_DB_RECOVERY_FILE_DEST

Size Limit

How long to keep flash logs

Optionally write archive logs to flash recovery area

Location

Set the location, space limit and retention limit for flashback logs when establishing
the flash recovery area. Since this is a recovery-related area, keep this on separate
disk devices from the database files. Optionally write the archive logs to this area
as well.

Oracle will begin to “complain” if you start running out of space. By complain, I
mean that it will write messages to the alert log. Refer to the next page for an
example of an alert log entry.

Supplemental Notes

1. A related step (for configuration of the flash recovery area) is to enable
flashback for the database with the ALTER DATABASE FLASHBACK ON
statement. An example of this statement is shown later in this lesson.

2. The Database Configuration Assistant supports the configuration of the Flash
Recovery Area.

3. The LOG_ARCHIVE_START parameter is deprecated in Oracle10g.

Flashback Enhancements 1.26

© 2005 SkillBuilders, Inc. V1.1

This is the alert log entry if you run short of space in the flash recovery area:
Errors in file /u01/app/oracle/admin/orcl/udump/orcl_ora_2723.trc:

ORA-19815: WARNING: db_recovery_file_dest_size of 2147483648 bytes is
92.12% used, and has 169270784 remaining bytes available.

You have the following choices to free up space from

flash recovery area:

1. Consider changing your RMAN retention policy.

If you are using dataguard, then consider changing your

RMAN archivelog deletion policy.

2. Backup files to tertiary device such as tape using the

RMAN command BACKUP RECOVERY AREA.

3. Add disk space and increase the db_recovery_file_

dest_size

parameter to reflect the new space.

4. Delete unnecessary files using the RMAN DELETE command.

If an OS command was used to delete files, then use

RMAN CROSSCHECK and DELETE EXPIRED commands.

**

Flashback Enhancements 1.27

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.27

Flash Recovery Area:
Management

New V$ view

SQL> exec print_table('select * from v$recovery_file_dest')
NAME : /mnt/mickeymantle/
SPACE_LIMIT : 10737418240
SPACE_USED : 2485816832
SPACE_RECLAIMABLE : 19995648
NUMBER_OF_FILES : 35

SQL> exec print_table('select * from v$recovery_file_dest')
NAME : /mnt/mickeymantle/
SPACE_LIMIT : 10737418240
SPACE_USED : 2485816832
SPACE_RECLAIMABLE : 19995648
NUMBER_OF_FILES : 35

How much space can be made available
through delete of “obsolete, redundant or

low priority files” Total number of archive and
flashback logs in the recovery

area

A new view, V$RECOVERY_FILE_DEST, is available to describe the current flash
recovery area. Here we can quickly find space allocated, used and “reclaimable”.
Reclaimable space can be made available via the database deleting “obsolete,
redundant or low priority files.” Hopefully, Oracle will choose wisely!

Flashback Enhancements 1.28

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.28

Flashback Database...
Alternative to point-in-time recovery

Very easy
Performance versus point-in-time recovery

Often faster
Reapply changed blocks versus restore then
recover

Can re-flashback more than once
Flashback, then Query database

All OK?
If so, OPEN RESETLOGS

Oracle10g introduces an easy alternative to using RMAN (or other methods) to
perform a point-in-time recovery: Flashback Database. It is easy to use (as you will
see) and – after you have flashed back the database – you can query the database,
confirm you like what you see, then use OPEN RESETLOGS to make the database
generally available. If you do not like the point in time you have flashed back to,
simply flash back again.

Flashback Enhancements 1.29

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.29

...Flashback Database
Use flashback logs to recover database

Contain changed blocks
Ongoing creation of new logs to capture changes
Written to “Flash Recovery Area”
Transactions dictate frequency / size of logs
Open questions

Exactly what initiates log write? What is threshold?

Automatic deletion of obsolete logs

Flashback logs are written to the flash recovery area if the database is configured
for flashback database support. (We will see how to do that next.) The logs contain
changed blocks.

Though it is clear that the transaction rate on your database will have an affect on
the number and possibly size of the logs, I was not able to determine what exactly
initiates a flashback log write. Nor was I able to determine what the size of a log will
be.

Logs are automatically deleted when:

the flash recovery area becomes constrained

the log is not needed for a recovery within the window specified in the
DB_FLASHBACK_RETENTION_TARGET parameter.

Flashback Enhancements 1.30

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.30

Enable FB Database
Configure flash recovery area

Destination, size limit, retention
Configure database
Overhead?

Initial tests show measurable increase
Stay tuned…

SQL> alter database flashback on;

Database altered.

SQL> select flashback_on from v$database;
FLA

YES

SQL> alter database flashback on;

Database altered.

SQL> select flashback_on from v$database;
FLA

YES

Starts recovery writer background
process (RVWR)

The database must be configured for flashback database support. In addition to
configuring a flash recovery area, you must alter the database with the
FLASHBACK ON clause. This starts a new background process (RVWR) to write
the logs.

What is the overhead of configuring the database for flashback database support
(i.e. creating a flash recovery area where flashback logs are written)? Oracle says
negligible. However, my initial tests showed measurable decrease in the
performance of my test application. HOWEVER I HAVE NOT DONE ENOUGH
TESTING TO FULLY VERIFY THIS. You must test.

Flashback Enhancements 1.31

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.31

Flashback Database: Example
SQL> startup mount
SQL> flashback database to scn 1427369;
Flashback complete.

SQL> alter database open read only;

Database altered.

SQL> startup mount
SQL> flashback database to scn 1427369;
Flashback complete.

SQL> alter database open read only;

Database altered.

Flashback to SCN or timestamp.
Need SYSDBA privilege.

Can open READ ONLY to
check things out

If necessary, re-mount, flashback to
different scn or time

SQL> alter database open resetlogs;
Database altered.

SQL> alter database open resetlogs;
Database altered.

Resetlogs deletes old FB logs NOW DO FULL BACKUP!

Here is a simple example of using flashback database. Here, I flashback to an SCN
which I might have gotten from a flashback version query (or logminer).

Supplemental Notes

Offline datafiles are not flashed back. However, if there are referential integrity
issues because you have not flashed back one or more datafiles, you will receive
the error:
ORA-01152: file 4 was not restored from a sufficiently old backup

So, essentially, you cannot do this – you will have to either recover or drop the file.
Thus I recommend you group referentially dependent tables in the same tablespace
if possible.

Flashback Enhancements 1.32

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.32

Flashback Summary...
Flashback Query

Session or sub-statement level
Query data at a previous point-in-time

Flashback Version Query
“VERSIONS BETWEEN” clause
Show changes made by transactions
Details about transaction

Flashback_Transaction_Query View
Access UNDO records, including undo-SQL

Flashback Enhancements 1.33

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.33

...Flashback Summary
Flashback Table

“Reset” table to previous point-in-time
Recover from dropped table

Flashback Database
Point-in-time recovery for entire database
Must configure database for this…

Flashback Enhancements 1.34

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.34

Resources
Oracle10g SQL Reference
Application Developers Guide –
Fundamentals
Oracle10g Database Reference

Flashback Enhancements 1.35

© 2005 SkillBuilders, Inc. V1.1

© 2005 SkillBuilders, Inc.

1.35

Thank You
Please keep SkillBuilders in mind for your training
and consulting needs:

Oracle
XML
Java / J2EE
Web Services
Web Development

Contact: Gary Belke
888-803-5607
www.skillbuilders.com

