Designing for Performance

A Case Study
Paul Baumgartel
Digitask Consultants, Inc.

The Requirements

Capture FIX messages for reporting

Data: order ID, key-value pairs

Replace non-normalized design

Support heavy transaction volume

Allow changes to message protocol

Provide efficient interface from JDBC client
Respond in real time to 50+ orders/ second

Existing Design

Normalized design not used based on
performance concerns

Individual keys and individual values
concatenated into two strings

Master table held order information

Child table held one record per message;
key string and value string each in one
column

EXxisting design problems

Concatenation of keys and values made
reporting difficult

Inquiries for information on a specific order
required client parsing of key-value strings
No provision for referential integrity

Non-normalized design made no provision
for dataintegrity

New Design Approach

Provide lookup tables for static data
(message types, field definitions, fields
assoclated with a message)

New message types, fields, message
composition handled by adding data values

Encapsulate all database activity in stored
procedure

Embody message dictionary in database

Performance enhancement

Package initialization to read |ookup values
Into package memory

Bulk binding of inserts

|ndex-organized tables to speed |lookup by
primary key

Range and hash partitioning for speed and
maintainability

E-R Diagram

Enumerated_value

Message_field_id
—O< Enumeration

Name_value
Message_field_id/1 (FK) (IE)

EV_MESSAGE_FIELD_ID

Field_name
Reference_name
Description
Enumerated_flag

Message_field_id

L MC_MESSAGE_FIELD_ID

Event

Event_type
Event_name
Event_description

Attribute

EMF_EVENT_TYPE

Message_field_count

Event_message_field

Event_type
—O< Message_field_id

Message field | EmMF_MESSAGE_FIELD_ID———0<{Event type/l (EK
Message_field_id/1 (FK)

Sort_order_1
Sort_order_2

OE_EVENT_TYPE
PA|

Order_event

Message_content

Order_Event_id SO—

Messaqge_field_id }
Message_field_id/1 (FK)

Content_value

MC_ORDER_EVENT _ID-——<

D

Order_id
Vantra_id
Customer_id

Symbol pO—————-

Timestamp

Route

Systemdate

Event_type

Order_Event _id (FK) (IE)
Message_field_id (FK) (IE)
Message_field_id/1 (FK) (IE)
Event_type/1 (FK) (IE)

Package source

CREATE OR REPLACE PACKAGE CREATE_EVENT
AS
type nunber_t is table of nunmber index by binary_integer;
type varchar _t is table of varchar2(256) index by binary_integer
type event _type t is table of event.event type% ype index
by bi nary_i nt eger;
type event nessage field count t is table of
event . nessage_field _count% ype index by binary_integer;

-- These are PL/SQ tables. The first holds the various event_types
-- (nuneric ids); the second holds the nessage field counts for each
-- event type. The nuneric id is used at runtine as an i ndex

-- into this table.

event types event type t;
event _nessage_field counts event _nessage field count _t;

-- Gets the event type |Ds.

cursor get_event _types is
sel ect event _type fromevent order by event _type;

-- CGets the field count for each event type.

cursor get _event _info is select event _type, nessage field count from
event order by event _type;

Procedure declaration

-- The procedure to insert an event.

procedure insert_event (
order _id p in varchar2,
vantra_id_p in varchar?2,
event _type p in varchar?2,
custoner _id_p in varchar?2,
synbol _p in varchar?2,
timestanp_p in nunber,
route_p in varchar?2,
systendate p in date,
File_Seq_p in varchar?2,
File O fset_p in nunber
Keys_p in varchar_t,
Vals_p in varchar _t);

END CREATE_EVENT;
/

Package body declarations

CREATE OR REPLACE PACKAGE BODY CREATE_EVENT
AS
procedure insert_event(

order _id_p in varchar?2,
vantra_id_p in varchar?2,
event _type_p in varchar?2,
custoner _id _p in varchar?2
synbol _p in varchar?2,
ti mestanp_p in nunber,
route_p in varchar?2
systendate_p in date,
File Seq_p in varchar?2,
File_Ofset_p in nunber,
Keys p in varchar _t,
Vals p in varchar t) is

v_id integer;
v_fcount integer;
v_fid integer;
v_oei d nunber _t;
v_nfid nunmber t;
v_nt varchar t;

Package body source 1

begi n

Get a unique ID for this event.
sel ect events.nextval into v_id from dual
Insert the event header row.
insert into order_event values (v_id, order_id p, vantra_id p,
custoner _i d_p,
synmbol p, tinmestanp_p, route_p, systendate p,
event _type_p);
Prepare three arrays for insert into nessage_content, which contains
the event information;
the array size comes fromthe nessage field count for this event type.
for v_fcount in 1..event_nessage_field _counts(event type p) LOOP

Get the nessage field id for this keyword.

sel ect nessage field_ idinto v_fid
from nmessage field where field name = keys_p(v_fcount);

Package body source 2

-- Insert the order_event _id, nmessage field_ id, and value into the three arrays.

v_oeid(v_fcount) := v_id,;
v_nfid(v_fcount) :=v_fid;
v_ntc(v_fcount) := vals_p(v_fcount);

end | oop;

-- Use bulk binding to pass all three arrays to the SQ engi ne
-- for insertion into nessage_content.

FORALL i IN 1..event_mnessage field _counts(event _type p)
| NSERT | NTO nessage_content (order _event id, nessage field_id,

cont ent _val ue)
VALUES (v_oeid(i), v_nfid(i), v_nm(i));

commi t;
end;

Package Initialization

Package initialization. Here, we read in the event

types and their correspondi ng nessage field counts.

We popul ate the nth element of the PL/SQ with the nmessage field count
for event _type n, so that the event _type can be used as an index into
the table, elimnating the need for searching.

begi n
open get_event _i nfo;
for etype in get _event types
| oop
fetch get _event _info into event types(etype. event type),
event _nessage_fiel d_counts(etype. event_type);
end | oop;

cl ose get _event _info;

END CREATE_EVENT;

Summary

 Normalized, extensible design

 Full use of Oracle performance-enhancing
techniques

o Satisfiesreal-time performance
requirements

Contact Information

o paul.baumgartel @aya.yale.edu
o 017 549-4717

