
Workload Characterization and Quantitative Modeling

 Brahmaiah Jarugumilli is an Oracle System Designer and Architect with a deep
experience in Oracle High Performance Architectures and a wide exposure to a variety
of Industries. He is currently associated with GE-Cosnumer Finance as an Enterprise
Architect for its Data Warehouses.

Shankar JayaGanapathy is a Technical Manager and Clustered Database Systems
Architect with Advance Technology Solutions (Oracle Consulting, Oracle Corporation)
and consults in the area of Performance and Availability.

Introduction:

Prepare for a journey into the world of Oracle statistics and their use in workload
analysis, characterization and capacity planning. We introduce, the internal ‘wait
statistics’ and ‘system statistics’, provided by Oracle for workload, diagnostics and
performance analysis. The goal is to utilize these statistics as load-factors to qualitatively
model an Oracle Database System and extend the idea to develop ‘Capacity Planning
Models’ through linear and non-linear regression techniques.

What is system workload?

In short, the demand placed on a system’s resources to do work can be defined as
workload. In a database system, the demand arises from queries and transactional
requests. The impact of this load on the system is observed in terms of CPU, Memory and
I/O related resource consumption as the main components. In the context of this paper,
workload is characterized based on Oracle Statistics as load-factors.

How is a system’s workload influenced?
Here are some influential factors:

• End users and their behavior—the intensity with which they perform work.
• Concurrency of online users and the mixture of the executed programs.
• Nature of the end-user layer of the application—for example, various forms,

canned reports or parameterized reports, etc.
• Application execution architecture—multiple tiers, proxy serviceability, threads

of execution, serial vs. parallel execution, etc.
• Security and audit features
• Layers, levels and sizes of caching—within Oracle, O/S, I/O sub-system,

Network, Application Server (JAVA caching), Web Server (HTTP Caching), etc.
• Data models and nature of the data—like volatility, reuse, concurrency etc.

Why should we characterize a system’s workload?
Accurate characterization is important for modeling and capacity planning. The goal of
workload characterization is to observe and accurately understand the stress and strain
placed on a system. This understanding, in turn will help in defining objectives and
building a competent model. Ideally, we isolate and identify the sensitive system
components that widely influence the observed system behavior. A model based on these
influential system components will there by firm up the foundation and also lends
credibility to related quantitative simulations.

Fig-1:

Oracle database has built-in mechanisms to collect system statistics. It also offers
application interfaces (APIs such as bundled software packages or GUI based tools) to
query, display, monitor and report on system statistics. There are several different
statistics that are collected by an Oracle database routinely. Each of them offers a
different perspective on database activity. In reality, not all of them may be very
meaningful under all situations. There are several interfaces that one can interact with, to
query and display these statistics. In general, querying fixed views (V$ or GV$) provide
a means to report on these statistics. The querying and reporting strategy usually depends
on the objective. Some common views that provide database statistics are: v$sysstat,
v$sesstat, v$sgastat, v$pgastat, v$rollstat, v$undostat, v$filestat, v$latch and
v$session_wait.

Some Tactical Issues in Collecting work load statistics

Load Imposed On the Database System By Collection of Statistics
The collection of statistics is work in itself and as such will impose a load on the system.
However, the load imposed on the system by collecting statistics is insignificant
compared to the overall production workload on many systems. The enormous value and
insight provided by system statistics offsets the load imposed on the system by its
collection. In other words, collection of statistics in a complex system is invaluable.

Statistics Collection Strategy
As stated earlier, setting up an infrastructure for collection of statistics depends on the
objectives for such collection. For example, if the objective is to simulate and understand
batch load processes that occur at evening times on a given system, then we need to
collect statistics at that time. On the other hand, if the goal is to understand and predict
online activity that occurs very early in the morning, when the database experiences high
login rates, then we should collect statistics during that time. The key message here is to
emphasize the importance of appropriate data collection strategy and to point out that it is
just as important as data analysis and interpretation.

There may be cases where a clear delineation of system load is not possible, under such
circumstances the statistics need to be collected on a continuous basis and subjected to
characterization that determines peak activity.

Refer to Figure 2, for a comprehensive plan for a statistics collection strategy.

Fig-2: Plan for statistics collection strategy

Step-1: State the need for workload characterization (WLC): Why do you want to
characterize load? Is it for determining optimization scope? Or for capacity planning? Or
for simulating load conditions for a test? Or for estimating response times for end users?
Step-2: Choose business context: Estimating the impact of adding another company of
150 OLTP users? Measuring the effect of adding a DWH ETL process on top of current
usage on the OLTP system?
Step-3: Define WLC Scenario: The scenario comprising 40 Order Entry clerks and 10
shipping staff? 10 designers plus 50 manufacturing engineers? The scenario determines
the load composition.
Step-4: Set up and collect Load-factors: You have several options here. Use Oracle
supplied Statspack tool to set up collections, or alternatively write your own simple code
to SELECT periodically from v$sysstat and v$system_event views INTO a user defined
table for a later analysis. The reporting interface provided through statspack is a little
incomplete for our purpose, since it generates difference analysis only between two
snapshots, where as, we may want to trend the statistics over a number of snapshots.
Also the statspack report generates a very large analysis that may not be required for our
present use. Yet another option is to develop your own queries against statspack tables.
Step-5: Identify Key Load-factors – more on this step later!
Step-6: Repeat collection- One reading is never complete. We have to cater to
anomalies and hence repeated multiple collections.
Step-7: Evaluate consistency- Check for changes and divergence patterns. We will
touch more on this aspect in the next chapter.

Distinguishing LOAD from EFFECT
A database environment is a complex knitting of related and unrelated elements
interacting with each other to produce a load effect. Therefore, understanding the
distinction between ‘LOAD’ and ‘EFFECT’ is relevant. It is particularly important to
understand the techniques discussed here.

Load and Dimensions: Oracle system statistics reflect and represent system load. The
differences (deltas) of each statistic represent the amount of work done, albeit, in a
singular dimension. For example, a number like 3,000,000 SORTS (ROWS) done in a
system during the last one hour represents the workload of that system in the SORTS
(ROWS) dimension. Similarly, a workload of having to perform 275,000 PHYSICAL
READS in the same time frame represents another dimension of the same system load.
Based on the preceding example, it can be observed that workload in a system essentially
is multi-dimensional and is a complex non-linear addition of them. Therefore Oracle
Statistics can be considered as ‘load-factors’. These load-factors represent distinctive
load dimensions and when grouped together, they signify a load-set.

Load Effects: Oracle wait events are significant in observing the resultant effects on the
system behavior under a given load. Oracle, being a management system, sets up service
counters for each and every resource and monitors their usage. Monitoring insures
proper and legitimate queuing up for the resources within the domains of transactional
integrity rules. The types of queues and amount of waiting will fall into different
categories (enqueues, child latches, etc.) and will also vary in terms of waited time
(nanoseconds to microseconds to seconds).

Database Environment Specific Wait Events
Depending on varying load conditions and application behavior, many different types of
wait events can occur in databases. However, some of them are more common than the
others. In other words, an OLTP database will predominantly spend most of its time
waiting on certain specific resources (latch free, log file sync, db file scattered read etc.)
to be available which will be reflected in its wait interface, which may be different for a
data warehouse (DWH) where parallel query waits are more common (PX Deq: Execute
Reply, PX Deq: Execution Msg etc.).

Oracle System Statistics and Database Operations

This section builds on load-factors discussed in the earlier sections and approaches load
management in a quantitative manner. The relationship between database internal
operations in terms of system statistics is presented here. The table below (Table 1)
briefly indicates the name and importance of some of these statistics.

Observe that, Table-1 is sorted by the ‘class’ of statistics: a convenient grouping to
represent sub-areas of activity in the database. The last three columns in the table state
whether the statistic is important for OLTP or DWH environment and the reason for its
importance.

Table-1: Classes of Statistics

CLASS NAME For

OLTP
For
DSS

Reason for Importance

1 logons cumulative X User Traffic- Log-Ins are expensive

1 opened cursors cumulative X Library Cache Load

1 user commits X X In conjunction with Rollbacks reveals utility and/or Wastage of
database write work

1 user calls X X Relates to work intensity across programs

1 session connect time X X Resource Quota guidance

1 session uga memory X X Memory usage pattern

1 session pga memory X Memory usage pattern

1 CPU used by this session X X Get hold of resource hogs

1 recursive calls X X Recursive loads in a non(limited) PL/SQL environment point to
extraneous un-planned for work worthy of investigation

1 session logical reads X X Provide idea of amount of data blocks usage

1 bytes received via SQL*Net from dblink X Usage of DB Links needs to be tailored for applications and
highly optimized on time-windows and needs

1 bytes received via SQL*Net from client X Traffic study across client connections may provide valuable clues
to software topology and process execution architecture

2 redo entries X X Redo operations yield valuable information on the database usage
intensity across time periods and user groups. Also useful for
fixing resource group quotas

2 redo size X X Redo operations in DWH environments are good candidates to
optimize ETTL processes and Temporary segment designs

4 enqueue waits X Enqueues reveal contentious resources and patterns of usage

8 total file opens X X Direct file based operations in an OLTP environments are
expensive due to context switches and other system calls and file
system resources like locks and permission nuances. DWH
systems include usage of External table operations in this category
which requires careful watching for overuse and non-optimized
accesses

8 consistent changes X X Contention signals!

8 DBWR checkpoints X X Check for optimal balancing of check pointing between Recovery
optimization and performance optimizations

8 DBWR buffers scanned X X Block buffer nuances

8 DBWR summed scan depth X Block buffer demand for reuse points to contentious blocks and
possible row-density optimization

8 physical writes X X This statistic reflects ‘physical’ writes from Oracle perspective
and may actually involve writes o OS and/or Disk system caches.
The ‘warmness’ of a disk system cache and the algorithms used in
such system are internal and specific to your disk system
suppliers.

8 CR blocks created X Read contention with simultaneous writes is a crucial application
behavior perspective.

32 queries parallelized X X Parallel operations in DWH systems are dealt with in relevant
section. In OLTP applications too many parallel operations should
ring alarm bells!

32 Parallel operations downgraded to serial X X Indicative of excessive parallelism and/or inadequate number of
CPUs in the system

32 global lock releases X X Crucial for Parallel server systems

64 index fast full scans (full) X X In applications demanding sub-second responses even Index scans
can be expensive!

64 sorts (rows) X X Limited Sort activity in OLTP systems is tolerable

64 table fetch by rowid X X In DWH systems with Bitmap index/join-index operations this
statistic may be misleading, for bitmap operations follow a
separate mechanism

Load Patterns, Load Dimensions and System Statistics

The following chart (Fig:3) shows the load patterns of a system of overlapping Oracle
databases, with a particular focus on “physical reads” as a load-factor. The subsequent
chart (Figure 4) shows the SORTING activity in the system during the same time period,
which is another load-factor.

Figure-3: Intensity of Physical Reads during the course of a day, plotted over
several days

0

5000000

10000000

15000000

20000000

25000000

5/
2/

99

5/
2/

99

5/
2/

99

5/
3/

99

5/
3/

99

5/
3/

99

5/
4/

99

5/
4/

99

5/
5/

99

5/
5/

99

5/
5/

99

5/
6/

99

5/
6/

99

5/
7/

99

5/
7/

99

5/
7/

99

5/
8/

99

5/
8/

99

5/
9/

99

5/
9/

99

5/
9/

99

5/
10

/9
9

5/
10

/9
9

5/
11

/9
9

5/
11

/9
9

5/
11

/9
9

Series

Series

Series

Figure-4: Intensity of Sorts(Rows) during the course of a day, plotted over several
days

0

500000

1000000

1500000

2000000

2500000

5/
2/

99

5/
2/

99

5/
3/

99

5/
3/

99

5/
4/

99

5/
5/

99

5/
5/

99

5/
6/

99

5/
7/

99

5/
7/

99

5/
8/

99

5/
9/

99

5/
9/

99

5/
10

/9
9

5/
11

/9
9

5/
11

/9
9

Serie

Serie

Serie

Repetitive patterns observed here (Figure 2 and 3) illustrate the ‘steady state’ aggregate
behavior in the applications. Looking into smaller time periods, for example, hourly or
half-hourly numbers, indicates load intensities across specific time frames. The shapes of
different load-factors (statistics) tend to differ based on the activity and the load
dimension that they reflect.

Note that the system behavior or load pattern is observed based on load-factors and not
cumulative CPU utilization or Memory usage.

Extracting a Meaningful Correlation Between Load-factors
This section explores the possible relationship between various load-factors and attempts
to illustrate a complex work area that is comprised of multiple such dimensions.

Consider a vector space as in figure 5. There are a number of vectors and each one of
them has its own direction and magnitude. The dark arrow is the resultant vector,
meaning a composite of all these directions and magnitudes.

Fig-5. Vectors in a vector space

Load-factors in an Oracle database system are analogous to the vectors in the vector
space and observed workload is a combination of several load-factors. The constituent
load-factors in a complex application environment are many and divergent. Resource
demands by various processes within a database, constantly changes and with it the
dimension of the resulting load-factors. This in turn will change the resulting overall
magnitude and dimension.

Positive correlation is used to represent direction of movement. In other words, they
increase or decrease in lock step fashion with the load scenario. This phenomenon can
also be called as a uniform variance, making it measurable as a co-variance statistic.

Identifying the load-factors: Identification of load-factors that display independence
(but still influent) is required to develop mathematical models for the load in the system.
Once identified, note the weights and scales of the load-factors that exhibit correlation.

This in turn will aide in the development of meaningful relationships for the load-factors.
For example, as the number of COMMITS increase, BLOCK CHANGES will tend to
increase.

Load-factors and load scenarios: For specific load scenarios specific load-factors attain
importance. The strength of the load model is displayed by the proportion of load that
could be strongly explained or predicted by the matrix of such load-factors. For example,
USER CALLS, USER COMMITS, PHYSICAL WRITES, and CPU USED BY THIS
SESSION will all show strong correlation with increased workload on a given system.

Relative movements between the load-factors: Identifying relative movements between
the load factors is an important step to determine whether a primary to secondary
relationship exists. It is possible to have load factors (primary) that influence other load-
factors (secondary). For example USER CALLS and PARSE COUNT (TOTAL) as
primary load-factors will increase RECURSIVE CALLS and CPU USED BY THIS
SESSION which are secondary load factors.

Natural Groupings of Load-factors
Interesting observations can be made on the relative behavior of the load-factors in
varying situations. What is referred here as ‘groupings’ are technically termed ‘factors’
in a quantitative research.

Relationships on Similar Physical Activity (Class of a statistic)
Load factors that are related to each other, i.e., the oracle defined class of statistic
(v$sysstat) represents the same operational area inside the database and provides insight
on different aspects of the operation. Following table lists database statistics representing
REDO activity (class 2):

 Table 2. Redo Statistics

Class 2 Statistics
redo blocks written
redo buffer allocation retries
redo entries
redo log space requests
redo log space wait time
redo ordering marks
redo size
redo synch time
redo synch writes
redo wastage
redo write time
redo writer latching time
redo writes

The above grouping is a convenient way to classify the load-factors into an ‘accounting
group’, but for the purpose of load analysis this will not suffice.

Relationship based on ‘related’ set of activities

The grouping alluded to, is the set of load-factors that signify the ‘WRITE’ aspect of the
environment. For example the write activity is reflected in:

• DBWR related activity
• REDO activity
• PHYSICAL Writes
• UNDO segment activity
• DB Block changes
• Transaction table writes.

This section concludes by pointing out that analyzing load-factors helps to derive logial
relationships among them. This in turn can be harnessed to model workload of a system.
The next section presents analysis techniques to determine these relationships.

Regression Analysis to Determine Relationships
Statistical regression modeling helps to build a mathematical model based on cause and
effect. In analyzing load-factors, this approach yields better results for the following
reasons:

1. Traditional Variance analyses are inappropriate to analyze a complex system such
as an Oracle database, which has layers of functionality. These layers represent
different technical operational structures are independent but at times follow a
daisy chain like activity-precedence approach. Independence is prevalent in the
distinctness of each activity of the system--consistency management, bulk or
highly selective index fetching, redo guarantee and undo management, etc.
Interdependence becomes obvious in layering of functionality such as physical
disk reads as a result of failure to cache a data block, creation of a consistent read
(CR) block to satisfy the SELECT needs on dirty and uncommitted block, etc.

2. The load behavior is therefore not conducive for a straightforward variance

analysis as here we are not dealing with a bunch of linear (or non-linear)
deterministic set of variables. Oracle load-factors exhibit both determinism as
well as spontaneity. One may wonder about the futility of an exercise to
characterize load and model it due to these reasons. The answer lies in the fact
that a subset of the load variables are deterministic, based on the physical and
logical architecture of the application and database, the hardware provisioned for
the system and the business and the nature of the software execution plans
fulfilling business objectives.

This approach to determine logical relationship is explored further in the ensuing
sections.

Simplicity of Regression Models
Statistical regression analysis offers a simplistic solution by:

• Offering a conditional set of relationship between all relevant variables validated
as constituent elements in determining a load level—as both dependent and non-
dependent variables.

• Strength of the model is quantified through the R-Squared value of the regression
model. This may also be construed as a reliability measure for the regression
output (equation).

Identifying Clustering Load-factors by Non-Linear Regression
This section explores approaches to build load-factor relationships and there strengths
using statistical regression modeling. The following table (Table.3) is an illustration of a
multi-variable regression conducted to predict the rate of CR Block creation in a
production system, as related to a number of other independent load-factors. The high R-
Squared value (0.93) and the low F-Statistic value (2.38 E –44) signify strong
relationship as determined by the model.

Table-3: Illustration of a multi-variable regression.

SUMMARY OUTPUT CR BLOCKS CREATED

Regression Statistics

Multiple R 0.964626

R Square 0.930504

Adjusted R Square 0.92151

Standard Error 0.092282

Observations 97

ANOVA

 Df SS MS F Significance F

Regression 11 9.691956 0.881087 103.4625 2.38E-44

Residual 85 0.72386 0.008516

Total 96 10.41582

 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -3.10908 0.971842 -3.19916 0.001938 -5.04136 -1.17679 -5.04136 -1.17679

X Variable 1 -1.63339 0.225192 -7.25333 1.76E-10 -2.08113 -1.18565 -2.08113 -1.18565

X Variable 2 -0.01199 0.041317 -0.29028 0.772311 -0.09414 0.070156 -0.09414 0.070156

X Variable 3 -0.15072 0.065202 -2.31161 0.023219 -0.28036 -0.02108 -0.28036 -0.02108

X Variable 4 -5.02366 1.662474 -3.0218 0.00332 -8.32911 -1.71821 -8.32911 -1.71821

X Variable 5 -0.64851 0.237838 -2.7267 0.007769 -1.1214 -0.17563 -1.1214 -0.17563

X Variable 6 2.722918 0.158554 17.1734 2.25E-29 2.407669 3.038167 2.407669 3.038167

X Variable 7 0.383586 0.123069 3.116834 0.002494 0.138891 0.62828 0.138891 0.62828

X Variable 8 -0.00618 0.186118 -0.03318 0.973609 -0.37623 0.363877 -0.37623 0.363877

X Variable 9 5.524968 1.780838 3.102455 0.002605 1.984184 9.065753 1.984184 9.065753

X Variable 10 0.111868 0.04582 2.441486 0.016701 0.020766 0.20297 0.020766 0.20297

X Variable 11 -0.09114 0.063939 -1.42541 0.157701 -0.21827 0.035989 -0.21827 0.035989

Although regression modeling is typically employed to determine the cause-effect
relationship between a set of variables, it can also be used to establish the relevance and
strength of such relationships. For example, consider the following regression
relationship taken from the above example:

“CrVAL = -3.109 + [X1 *(-1.633)] +...+ [X6 * (2.72)] +….[X9 * (0.056)]…

It is evident that the variable X1 and X6 exhibit larger influence in determining the
variable CrVAL than X9. This is by virtue of the regressin coefficients- (-1.633) and
(2.72) being several times higher than that of X9 (0.056). Another fact is the inverse
relationship between CrVAL and X1 (Negative sign).

Using Logarithmic values

Load-factor relationships are not always linear due to their complex interactions with one
another and therefore non-linear regression techniques need to be employed. Linear
regressions are easy to predict and equate relative to non-linear models. Since we are
dealing with a large number of variables and the relation between them is not known
mathematically, we can safely assume non-linear (even curvilinear) equations. In order
to simplify the regression model, we then use the logarithmic values of the variables.
Logarithmic values reduce the non-linearity to linearity between log predicates. Once the
prediction is made, we then Inverse-log the predicate values to derive our numerical
constants. Although it is a round about way, the models are more reliable because they
address both linear and non-linear behavior.

Deploying Workload Characteristics for Capacity Planning

This section illustrates the use of load-factors to compute CPU utilization. This exercise
involves two distinct steps – (1)- of computing basic resource requirements and (2)- of
estimating the response times for end user transactions. These steps are illustrated in
tables 4 and 5 in the following sections. Note that these illustrations serve as examples
for putting workload characterization to use and do not serve as a tutorial for capacity
planning.

Step-1: Compute basic resources requirement

The following table (Table-4) contains CPU related load-factors. Observation of the table
data shows workload scenarios 2 and 3 have been developed from scenario-1 through
regression models and related extrapolations, to represent possible loads. Here we are
looking at CPU as the main resource being planned for, with the appropriate load factors
that effect CPU utilization directly. The utilization is computed as the CPU time used
against the load capture window of 10 minutes (600 seconds). Note the simulated # of
jobs in the last line as a count of ‘virtual users’ that induced the extrapolated amount of
workload in the system.

Table-4:

All values gathered and regressed over 10 Minute intervals

Regression Scenario-1 Scenario-2 Scenario-3

stat name CPU RELATED

USER CALLS 1684 17777 129339

CURSOR AUTHENTICATIO 68 598 4383

EXECUTE COUNT 454 4588 32905

OPENED CURSORS CUMUL 70 620 4539

PARSE COUNT 84 703 5092

RECURSIVE CALLS 97 532 3536

SORTS (ROWS) 14470 15563 26063

CPU Used (seconds) 75.3 284.1 2218.3

Number of CPUs 1 1 6

Projected Utilization 12.55 47.35 61.62

CPU used per sec 0.1255 0.4735 3.6971667

Simulated # of Jobs/Sec 1 4 29.00

Step-2: Computing the response times for jobs running in the system:
One should be aware that response times in a system vary exponentially with the
utilization of the resources in the system. See the graph below:

Figure 6. Response time utilization graph

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10

Utilization

R
es

po
ns

et
im

e

Response Time

The mean response times can be computed from the utilization values derived above by
developing a queuing model. See Table- 5 (Column M stands for the number of
resource counters, CPUs in this simulation).

This table (Table 5) shows the response times developed for the above load system
through a M/M/1 queuing model. One can develop such models through guidance from
any standard book on Queuing Theory. Observe the following while reading this table.

1. Recollect that our goal is to simulate system usage for 29 virtual users; the above
simulation shows the performance numbers up to 31 users, towards the bottom of
the chart in the 24th row.

2. The second column is the service rate, a constant number per device. The only
way to increase throughput is by increasing devices, in this case the number of
CPUs, shown in column ‘m’.

3. The third column- λ is the real variable here. By increasing the arrival rate of
jobs (in this case virtual users hitting the system on a per second basis), we
compute the other dependent results like- probability of ‘n’ jobs in queue,
Utilization, Response and waiting times, jobs in queue, etc. Utilization increase
results in exponential increase of response times (see the graph above) become
too large, we add a CPU and bring down the utilization by sharing the queues.

4. Observe how the response times grow in simulations 7,8, 14- 16. The response
times increase by an order of 600%. The system users are going to panic. These
are the times where the system administrators and managers will have to decide to
augment resources. The simulations provide a way to foresee what the users will
experience. The system utilization is close to 90% at these times.

5. Notice how the job queue builds up during these scenarios to double digit
numbers and remember that these are bundles of virtual users.

Table 5. Response times developed through a M/M/1 queuing model.

Simulation
Number µ λ ρ m

Probability of
zero jobs in
Queue

Prob for 5
jobs

Prob for 20
jobs

Jobs in
Queue Utilization

Mean
Response
time

Mean
waiting
time

1 8 1 0.125 1 0.875 3.34E-06 1.02E-10 0.017857 12.5 0.142857 0.017857

2 8 4 0.5 1 0.5 0.007813 0.000244 0.5 50 0.25 0.125

3 8 6 0.75 1 0.25 0.044495 0.010559 2.25 75 0.5 0.375

4 8 8 0.5 2 0.5 0.007813 0.000244 0.5 50 0.25 0.125

5 8 12 0.75 2 0.25 0.044495 0.010559 2.25 75 0.5 0.375

6 8 13 0.8125 2 0.1875 0.053944 0.019101 3.520833 81.25 0.666667 0.541667

7 8 14 0.875 2 0.125 0.056099 0.028774 6.125 87.5 1 0.875

8 8 15 0.9375 2 0.0625 0.042433 0.03073 14.0625 93.75 2 1.875

9 8 16 0.666667 3 0.333333 0.029264 0.003854 1.333333 66.66667 0.375 0.25

10 8 17 0.708333 3 0.291667 0.036839 0.006569 1.720238 70.83333 0.428571 0.303571

11 8 18 0.75 3 0.25 0.044495 0.010559 2.25 75 0.5 0.375

12 8 19 0.791667 3 0.208333 0.051288 0.015949 3.008333 79.16667 0.6 0.475

13 8 20 0.833333 3 0.166667 0.055816 0.022431 4.166667 83.33333 0.75 0.625

14 8 21 0.875 3 0.125 0.056099 0.028774 6.125 87.5 1 0.875

15 8 22 0.916667 3 0.083333 0.049441 0.032 10.08333 91.66667 1.5 1.375

16 8 23 0.958333 3 0.041667 0.032277 0.02609 22.04167 95.83333 3 2.875

17 8 24 0.75 4 0.25 0.044495 0.010559 2.25 75 0.5 0.375

18 8 25 0.78125 4 0.21875 0.049738 0.014476 2.790179 78.125 0.571429 0.446429

19 8 26 0.8125 4 0.1875 0.053944 0.019101 3.520833 81.25 0.666667 0.541667

20 8 27 0.84375 4 0.15625 0.056377 0.024109 4.55625 84.375 0.8 0.675

21 8 28 0.875 4 0.125 0.056099 0.028774 6.125 87.5 1 0.875

22 8 29 0.725 5 0.275 0.039936 0.007999 1.911364 72.5 0.454545 0.329545

23 8 30 0.75 5 0.25 0.044495 0.010559 2.25 75 0.5 0.375

24 8 31 0.775 5 0.225 0.048752 0.01363 2.669444 77.5 0.555556 0.430556

Conclusion
This paper presents an introduction and an alternative approach to quantitative modeling
of load and performance in Oracle systems. Load metrics comprising of Oracle system
statistics and Oracle wait events are useful in presenting an internal view of the load and
resultant resource based queues. Capturing these statistics helps in developing workload
characteristics, which in turn are useful in evolving capacity models for the underlying
architecture and environment.

References

[1] Raj Jain, 1991, “The Art Of Computer System Performance Analysis”, John

Wiley & Sons.
[2] Daniel A. Menasce, Virgilio A.F. Almedia, 1998, Prentice Hall.
[3] Hennessey and Patterson; ‘Computer architecture- A Quantitative

Approach’; Morgan Kaufmann
[4] Killelea, Patrick- ‘Web Performance Tuning’; O’Reilly
[5] Gunther, Neil J.; ‘The Practical Performance Analyst’; McGrawHill.

