FORMULATING THE GRID RELIABILITY AND PERFORMANCE MODEL

SETTING THE GRID RELIABILITY EQUATIONS AND MATRICIAL MODEL

NYOUG DBA SIG MEETING OCT. 2008 AT ORACLE CORPORATION

ANTHONY D NORIEGA

Overview

- Project Description
 - Objective
 - Motivation and Expected Results
- Conceptual Framework
 - Reliability Model
 - Performance Model
 - Integrating Grid Mathematics
- Proposed Model Methodology
- Math Applications and Model Analysis
- Concluding Remarks

Speaker Qualifications

- Independent Consultant, ADN
- Speaker at NYOUG meetings
- □ 24 years of IT experience
- □ 18 years of Oracle experience, 13 as a DBA
- □ RMAN experience with Oracle8i,9i, 10g, and 11g, since 1999.
- □ BS Systems Engineering, Universidad del Norte, 1987.
- □ MS Computer Science, NJIT, 1993
- □ PhD CIS candidate, NJIT, 1997
- MBA MIS, Montclair State University, 2006
- College Math Proessor and former HS Math Teacher Principal.

Objectives

- Present a mathematical model to customize both grid reliability and performance in terms of:
 - Critical Alerts
 - Warning Alerts
 - Custom Thresholds
- Introduce a useful matrix-driven model providing:
 - Bl multi-dimensional capabilities
 - Stochastic Model and random process analysis
 - Capabilities to enable time series analysis via ARIMA

Defining Reliability

Reliability can be expressed as:

 $R = \frac{MTTF}{MTBF}$

And further expanded to:

MTTF is the Mean Time to Failure, and MTBF is the Mean Time Between Failure; and MTBF, and can be decomposed into the Mean Time To Failure plus the Mean Time To Recover (MTTR).

 $R = \frac{MTTF}{MTTF + MTTR}$

Continuous Reliability Model

$R = e^{-(\lambda t)} \frac{(\lambda t)^k}{k!}$

The stochastic model (Poisson process)

Complexity of Grid Infrastructure

General Performance Control Model

- A general performance control model must involve:
- □ A Proportionate approach.

An Integrative Approach

$$Rc = ke^{-(\lambda t)} \frac{(\lambda t)^k}{k!}$$

$$Rc = \int e^{-(\lambda t)} \frac{(\lambda t)^k}{k!} dt$$

$$Rc = \frac{d}{dt} \left(e^{-(\lambda t)} \frac{(\lambda t)^k}{k!} \right)$$

- So, PID, is the principle to derive performance control based on a continuous reliability model.
- A Transformative or Transformational Approach, such as Laplace transform, is also suitable for complex systems, where encryption is appropriate.

λ Inter-Arrival Rate Based on Alerts

Critical Inter-arrival rate, i.e., based on critical alerts.

$\lambda_{c} = \frac{\#ofCriticalAlerts}{\#TestUnit}$

λ Inter-Arrival Rate Based on Alerts

Non-Critical Inter-arrival rate, i.e., based on critical alerts.

#ofWarningAlerts #TestUnit

The Model Weighed Inter-arrival Rate Lambda.

 $n_c \lambda_c + n_w \lambda_w$ $n_{c} + n_{w}$

Adjusting the Inter-arrival rate λ

Biased Model Weighed adjusting the Critical Interarrival Rate λ (Lambda).

$$\lambda = \frac{n_c (k\lambda_c) + n_w \lambda_w}{n_c + n_w}$$

Adjusting the Inter-arrival rate λ

Biased Weighed Model adjusting both the Critical Inter-arrival Rate λ (Lambda) and its cardinality .

$$\lambda = \frac{kn_c\lambda_c + n_w\lambda_w}{kn_c + n_w}$$

Weighed Inter-Arrival Rate λ

The Model Weighed Inter-arrival Rate Lambda (using a constant for warnings).

$$\lambda = \frac{n_c \lambda_c + n_w c_w}{n_c + n_w}$$

Adjusting the Inter-arrival rate λ

Biased Model Weighed adjusting the Critical Interarrival Rate λ (Lambda) and (using a constant for warnings).

$$\lambda = \frac{n_c (k\lambda_c) + n_w c_w}{n_c + n_w}$$

Adjusting the Inter-arrival rate λ

 Biased Weighed Model adjusting both the Critical Inter-arrival Rate λ (Lambda) and its cardinality and (using a constant for warnings).

$$\lambda = \frac{kn_c\lambda_c + n_wc_w}{kn_c + n_w}$$

Aggregate Reliability Model

The Aggregate Time-Driven Reliability Continuous Model.

 $\int_{t_0}^{t_1} \frac{e^{-(\lambda t)} (\lambda t)^k}{k!} dt$

RAC Reliability Model

RAC Node-based Reliability Expectation.

Grid Reliability Metrics

Actual Grid Reliability Metrics via Service Level Management.

		Page Refreshed O	Refresh			
Service Status	s Performance	Usage	Components	Service Level Last 24 Hours Last 7 Days		Last 31 Days
MedRec 👉	5.00 Perceived Total Time 1.00 Connect Time (ms)	2.92 Application - Active 0.00 Application - Active	1 up	100.00%	100.00%	100.009
Pet Store	2385.00 Browse Pets - Percei 1117.00 Shopping Cart - Perc 2.00 DB - Response Time	21.00 Enqueue Requests (pe 1.00 Active HTTP Requests 0.95 Request Throughput () 3 up	100.00%	100.00%	97.149
Credit Rating App	97.22 Applications Process	13.11 Credit Rating Succee 71724.00 Applications Process	6 up	100.00%	100.00%	73.45%
Credit History App	97.99 Applications Process 2.00 Response Time (per t	65485.00 Applications Process 98.29 Credit History Appro	5 up	100.00%	100.00%	100.00
oan Ival 2	98.16 Applications Process	97.08 Loan Approved (%) 64658.00 No of Loan Approvals	○ 3 up	100.00%	100.00%	100.00

RAC/Grid Pro-Reliability Model

Weighed RAC/Grid Inter-Arrival Rate

This can also be presented as the generalized model with cubic features for BI analytic purposes.

RAC/Grid Pro-Reliability Model

Weighed RAC/Grid Inter-Arrival Rate

This can also be presented as the generalized model with cubic features for BI analytic purposes.

General Performance Control Model

- A general performance control model must involve:
- □ A Proportionate approach.

$$Rc = ke^{-(\lambda t)} \frac{(\lambda t)^k}{k!}$$

$$Rc = \int e^{-(\lambda t)} \frac{(\lambda t)^k}{k!} dt$$

 $Rc = \frac{d}{dt} \left(e^{-(\lambda t)} \frac{(\lambda t)^{k}}{k!} \right)$

- A Derivative Approach.
- So, PID, is the principle to derive performance control based on a continuous reliability model. As mentioned, a Transformational Approach is also possible.

Grid Targets

🗙 xterm

\$ emctl config listtargets
TZ set to US/Eastern

Oracle Enterprise Manager 10g Release 10.1.0.3.0. Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved. [dnlvnjtools, host] [EnterpriseManager0.dnlvnjtools_HTTP Server, oracle_apache] [dnlvnjtools:1810, oracle_emd] [EnterpriseManager0.dnlvnjtools_home, oc4j] [EnterpriseManager0.dnlvnjtools_BC4J, oracle_bc4j] [EnterpriseManager0.dnlvnjtools_Web Cache, oracle_webcache] [EnterpriseManager0.dnlvnjtools, oracle_ias] [EnterpriseManager0.dnlvnjtools_OC4J_EM, oc4j] [EnterpriseManager0.dnlvnjtools_JServ, oracle_jserv] \$

Matricial Models

Aggregation can be implemented via block matrices.

The Middleware Block Matrix involving RAC, Application Farms, Applications, and Collaboration Suite Target's Metrics

BI Analysis and Forecasting

 Block Matrix Design, which allows for multi-dimension and Business Intelligence Analysis

$$\begin{bmatrix} r_{1,1} & r_{1,2} & \dots & r_{1,n/2} & f_{1,1} & f_{1,2} & \dots & f_{1,n/2} \\ r_{2,1} & r_{2,2} & \dots & r_{2,n/2} & f_{2,1} & f_{2,2} & \dots & f_{2,n/2} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ r_{n/2,1} & r_{n/2,2} & \dots & r_{n/2,n/2} & f_{n/2,1} & f_{n/2,2} & \dots & f_{n/2,n/2} \\ a_{1,1} & a_{1,2} & \dots & a_{1,n/2} & c_{1,1} & c_{1,2} & \dots & c_{1,n/2} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n/2} & c_{2,1} & c_{2,2} & \dots & c_{2,n/2} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n/2,1} & a_{n/2,2} & \dots & a_{n/2,n/2} & c_{n/2,1} & c_{n/2,2} & \dots & c_{n/2,n/2} \end{bmatrix}$$

Block-Based Grid Visualization

Therefore, one could conceive the grid as a block-based matrix, in general, as displayed

Binomial Model Perspective

Assuming that a grid contains N such block matrices, it is also possible to establish that the probability that a warning or critical alert message reaches one of these blocks over a unit of time is a Bernoulli sequence given by:

$$B(\lambda N, 1/N) = \binom{\lambda N}{k} \left(\frac{1}{N}\right)^{k} \left(1 - \frac{1}{N}\right)^{\lambda N-k}$$

Where $p = \frac{1}{N}$ is the probability of success, i.e., that an alert reaches a block in the grid over a unit of time.

Binomial Model Perspective

The same Bernoulli trial/sequence perspective can be seen over a period of time as:

$$B((\lambda t)N,1/N) = \binom{(\lambda t)N}{k} \left(\frac{1}{N}\right)^k \left(1 - \frac{1}{N}\right)^{(\lambda t)N-k}$$

Where $p = \frac{1}{N}$ is the probability of success, i.e., that an alert reaches a block in the grid over a duration of t units of time. The discrete view is consistent with the continuous model previously introduced.

Unified Grid Middleware Model

Matrix displaying the Unified Grid Middleware Model

$m_{_{1,1}}$	$m_{_{1,2}}$	•••	$m_{_{1,n/2}}$	$\mathcal{M}_{1,(n/2)+1}$	$\mathcal{M}_{1,(n/2)+2}$	•••	$\mathcal{M}_{_{1,n}}$
$m_{_{2,1}}$	$m_{_{2,2}}$	•••	$m_{_{2,n/2}}$	$\mathcal{M}_{2,(n/2)+1}$	$m_{2,(n/2)+2}$	•••	$\mathcal{m}_{2,n}$
• • •	•••	•••	•••	•••	•••	•••	•••
$m_{_{n/2,1}}$	$\mathcal{M}_{n/2,2}$	•••	$\mathcal{M}_{n/2,n/2}$	$\mathcal{M}_{n/2,(n/2)+1}$	$\mathcal{M}_{n/2,(n/2)+2}$	•••	$\mathcal{M}_{n/2,n}$
$\mathcal{M}_{(n/2)+1,1}$	$m_{(n/2)+1,2}$	•••	$\mathcal{M}_{(n/2)+1,n/2}$	$\mathcal{M}_{(n/2)+1,(n/2)+1}$	$\mathcal{M}_{(n/2)+1,(n/2)+2}$	•••	$\mathcal{M}_{(n/2)+1,n}$
$\mathcal{M}_{n/2+2,1}$	$M_{(n/2)+2,2}$	•••	$\mathcal{M}_{(n/2)+2,n/2}$	$m_{(n/2)+2,(n/2)+1}$	$\mathcal{M}_{(n/2)+2,(n/2)+2}$	•••	$\mathcal{M}_{(n/2)+2,n}$
•••	•••	•••	•••	•••	•••	•••	•••
$m_{n,1}$	$m_{n,2}$	•••	$\mathcal{M}_{n,n/2}$	$\mathcal{M}_{n,(n/2)+1}$	$\mathcal{M}_{n,(n/2)+2}$	•••	$\mathcal{M}_{_{n,n}}$

Mathematical Applications

- Time Series (ARIMA, Smoothing and Moving Averages Methods).
- Markov Chains and Bayesian Models
- Monte-Carlo Simulation
- Structured Matrices, namely, Toeplitz, Hankel, Vandermonde, Cauchy.

Concluding Remarks

- Affinity and congruency derived from breaking constraints due to data asymmetry.
- Model is statistically and mathematically valid.
- Various mathematical applications.
- Performance Optimization driven by Proportionate, Integrative, and Derivative PID Reliability Control options.