

Increasing Performance of Existing Oracle RAC up to 10X

Prasad Pammidimukkala

www.gridironsystems.com

The Problem – Data can be both Big and Fast

Processing large datasets creates


high bandwidth demand

- Rapid ingest through scans
- Spills and reread of temp
- Burst demand many times average

Concurrent queries and threads

access the same data

- Data layout for bandwidth may not be concurrency friendly
- Hot spots on disks or stripes
- Write demand can stall reads

Databases with demand for bandwidth and concurrency run into a Storage Performance Wall

Oracle RAC with ASM – Potential Limited by Storage

Stripe Tables over many LUNs and Distribute

Processing

- Prevent multiple servers hitting same LUNs
- Allow scans to utilize combined server IO
- Failover of down server

 Storage Performance limits effectiveness and scaling

- Storage system controllers outmatched by processing and IO capability of servers (the IO Performance Gap)
- Storage architectures not designed for linear performance scaling (designed for capacity)
- Virtualized layout can still cause physical disk or stripe hot spots

Every storage management function and feature requires resources taken from application IO processing

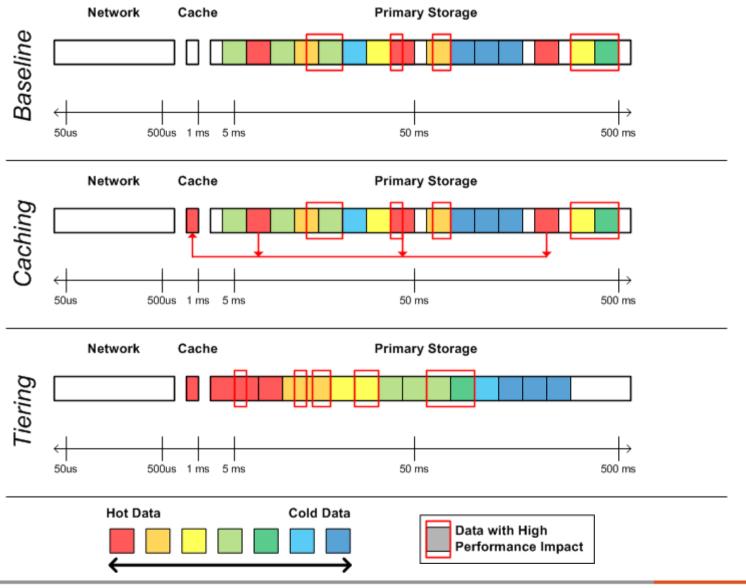
Flash to the Rescue - Maybe

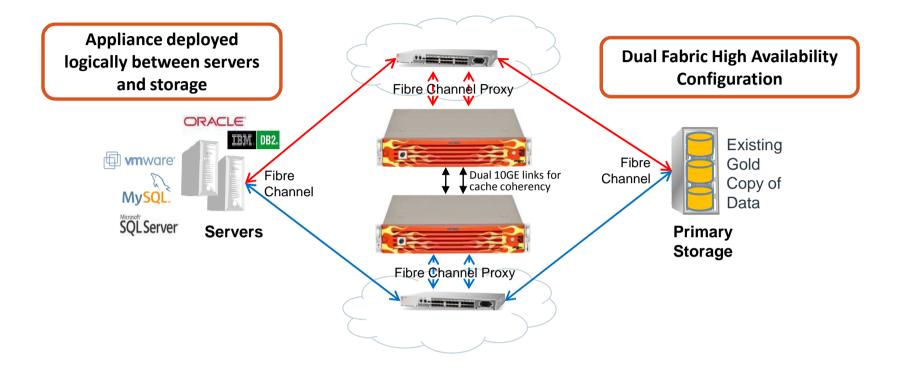
Flash in the Servers

- Changes to Software
- How is HA handled?
- No sharing among servers
- Large CPU overhead
- Capacity and effectiveness?

Flash in the Storage Array

- Architectures not designed for Flash
- Sequential performance no better than spinning disk
- Effectiveness of caching and tiering
- Controllers can still be bottleneck to scaling
- Full Flash Storage Array
 - Sized for entire physical disk capacity and growth
 - Not economical even with compression and deduplication
 - Forklift upgrade of existing datacenter changes to applications and processes



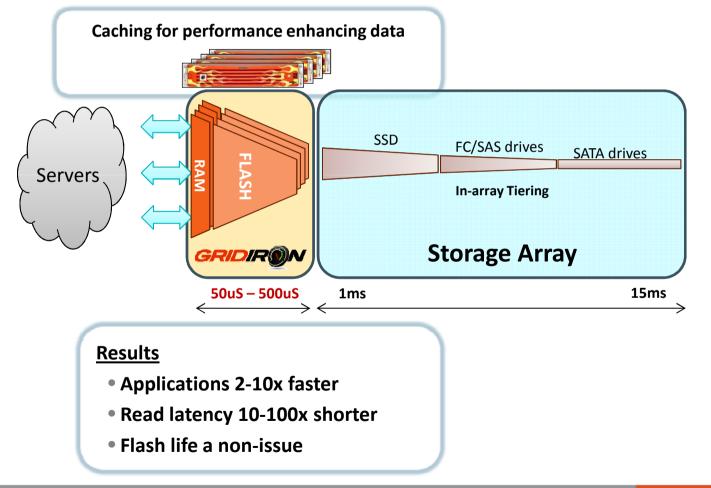


Caching and Tiering in Database Storage

Network-Based Flash for Database Acceleration

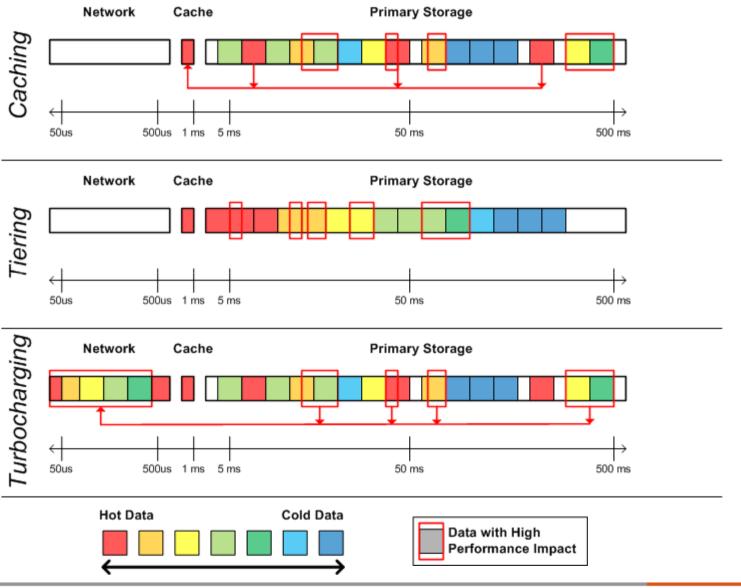
Transparently accelerate data access in the SAN

Solid State Performance with no change to: Software - Databases - Servers - Storage - Processes


Real-Time Tiering Enables High Concurrent Bandwidth

Acceleration in the Network

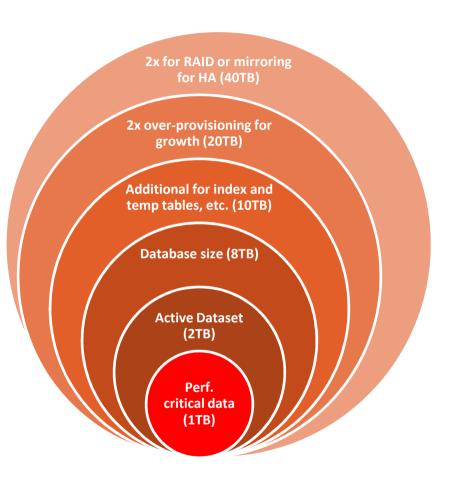
- Higher concurrent IO bandwidth
- Higher IOPS
- Low latency multi-level cache


The Learning Process

- Learn data access graphs in real time
- Use patterns to manage caching
- Use feedback to continuously refine performance

TurboCharging Database Storage

Network Solution Provisioning vs. Dataset (8TB Example)


Smart Flash in the Network

- Sized for a fraction of dataset
- Adapts in real-time to changes in usage and scale
- Is shareable among servers, applications and arrays
- Is always coherent with backend storage state
- Requires no changes to applications or data management processes

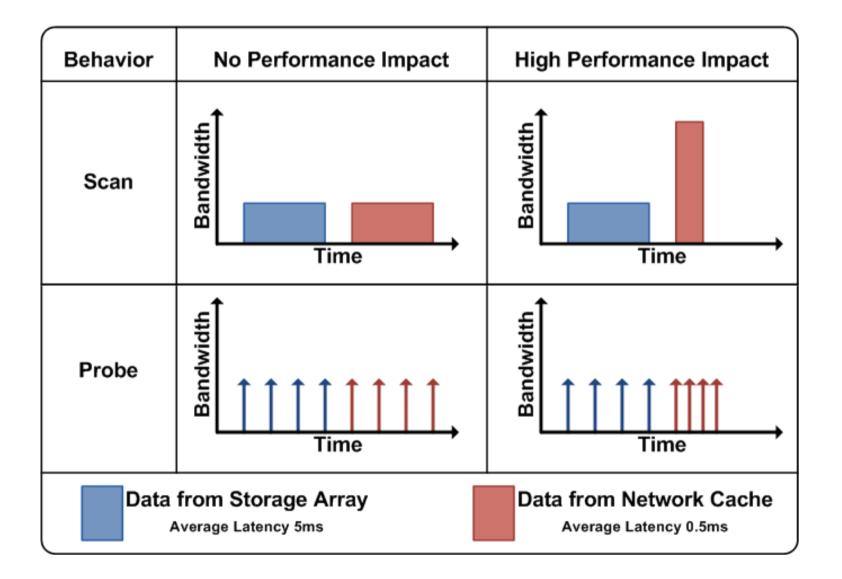
Overcomes physical limitations of

storage architecture

- Highest concurrency access to performance critical data
- Scale bandwidth and IOPS without regard for architecture of storage system
- Separate data access from data retention
- Leverage and extend existing storage investment

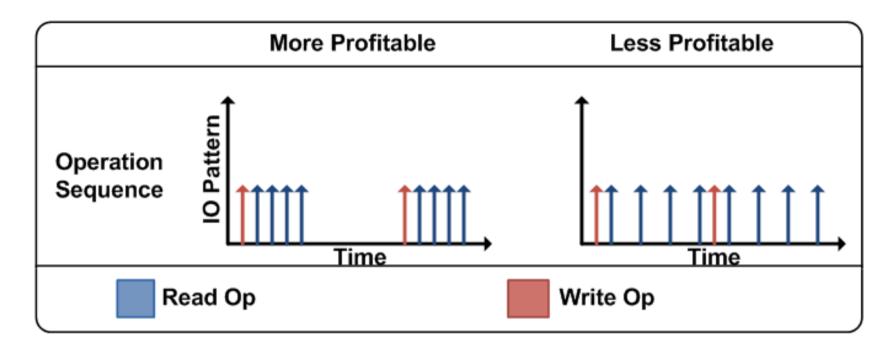
Flash Control and Effectiveness

Network Cache is not Primary Storage


- Can use RAM for high churn data and critical blocks
- Learns what not to cache (no capacity churn)
- Flash not subject to write patterns of application
- Uses large, aligned and contiguous writes
- No over-provisioning, RAID or rebuilds
- Can achieve stripe width far beyond arrays

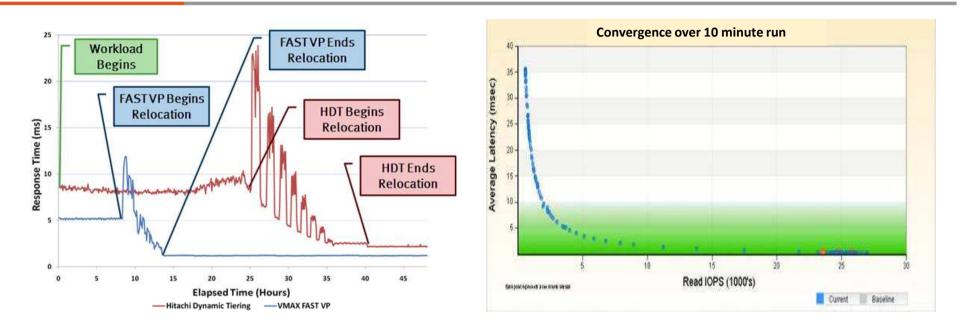
Use profitability as eviction scheme

- Collect statistics over entire storage space
- Set Rank pixelates storage map
- Use application behavior to dynamically adjust chunk size
- Perform cost-benefit analysis of each caching decision
- Reinforce or punish behaviors based on application reaction



Selected Profitability Examples for Database Operations

Selected Profitability Examples for Database Operations



Read count is a poor metric

- Need to consider write count and read-read delta time
- Every cache eviction is lost storage performance
- Opportunity cost of waiting for read hits can be high

Extending In-Array Tiering to Real-Time

- 1. Above graph is a comparison between EMC FAST and Hitachi Dynamic Tiering
- 2. After 9 hours, FAST started relocating data and completed in14 hours. Response time improved from 5ms to 1ms. During data relocation, latencies more than doubled
- 3. After 1 minute, GridIron started improving both response times & IOPS and completed in 10 minutes. GridIron took latencies & IOPS from 35ms and 200 IOPS and improved them to latencies of 0.1ms and 25,000 IOPS
- 4. Note that GridIron improves latency as well as throughput beyond the physical capabilities of the storage array

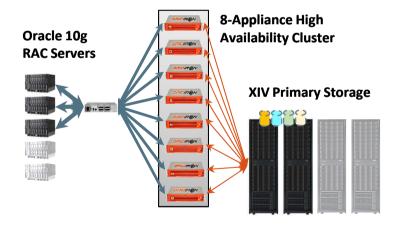
Source: http://thestorageanarchist.typepad.com/weblog/2011/04/4001-when-you-say-tiering-do-you-mean-degradation.html

Successful Proof Points in Multiple Real World Applications

Customer	Application / Business Problem	Big Data Characteristics	GridIron Performance Improvement	CapEx Savings With GridIron
⊲≅shopzilla	 Oracle Data Warehouse "Real time" reports taking 6 hours Lost revenue from delays Over-provisioning storage for performance 	 Bandwidth: >10GB/s Concurrency: 25+ users Data set size: 40TB DWH Data turnover: continuous ETL 	 Critical reports 6 hrs -> 30 mins. 	 <u>\$2M</u> from storage and server consolidation
REGULUS A 3i Infotech Company	 Oracle Data Warehouse User complaints due to missed SLAs Storage struggling to service complex queries Massive applications overwhelming storage systems resulting in poor performance 	 Concurrency: Multiple applications sharing storage 	 4x improvement in IOPS 5x reduction in latency 	 <u>\$1M</u> from storage life extension and use of lower cost SATA drives for capacity expansion
Financial*Technology Solutions	 Hosted financial services apps based on MS SQL Slow DataMart transaction analytics reports Meeting SLAs with hosted clients Cost-prohibitive to dedicate infrastructure per hosted client 	 Concurrency: Several applications and hosted customers interacting with each other 	 3x improvement in Data Mart response times 2x increase in hosting capacity 	 Savings of <u>\$1,2M</u>
ACTIVISION.	 Large eDiscovery - MS SQL under VMware Multi-hour query times affecting productivity Need to support concurrent users Serialized system impacting business 	 Bandwidth: >2 GB/s Concurrency: 4 users 	 Query Times reduced by >50% Increased query capacity by 6x 	 Saved <u>\$775K</u> on a storage upgrade (only 2x)
<u>14</u> ©2	Video game software builds under VMware • Builds taking 70 minutes to complete • Game quality impacted by long build time ০ <mark>৭ ঠ[া]দ্দেন্বাহন্দ ব্যুহাটান্ড</mark> ্য্যান্ <u>দ</u> েণ্ <u>বা</u> গ্নন্দ্রীয়্ট্রান্ড্র্রান্ড্র্যান্ড্	 IOPS: 40,000 Random Concurrency: 24 users with parallel builds February 8, 2012 	 Build time reduced from 70 -> 8 mins. 	 <u>\$800K</u>vs. alternatives

Case Study: 40 TB DWH For Online Comparison Shopping Sapara Shopzilla

Challenges


- Customer behavior analytics cycle taking too long (six hours) directly impacting revenue optimization
- Lost revenue from delays in fixing anomalies in customer-facing infrastructure
- Prohibitive storage acquisition and management costs from rapid data growth

Environment

 Storage: 	IBM XIV Storage Systems
 Servers: 	Dell 2950 server nodes (16GB DRAM) with dual QLogic 8Gbps FC HBAs
FC Fabric:	QLogic SANbox 9000 FC switches
GridIron:	Eight GT-1100 TurboChargers in a striped configuration

Benefits

- Business-intelligence reports' run time reduced from 6 hours to 30 minutes
- Near real-time decision-making to optimize operations and maximize revenue
- CapEx savings of over \$2M compared to alternatives
- Ability to support more online products
- Ability to handle peak holiday loads without degradation in performance

"Online data analytics is at the heart of what we do as a company. We live and die by our data!"

Burzin Engineer, VP of Infrastructure Services, Shopzilla

Case Study: DWH on Microsoft SQL in a Hosted Environmer

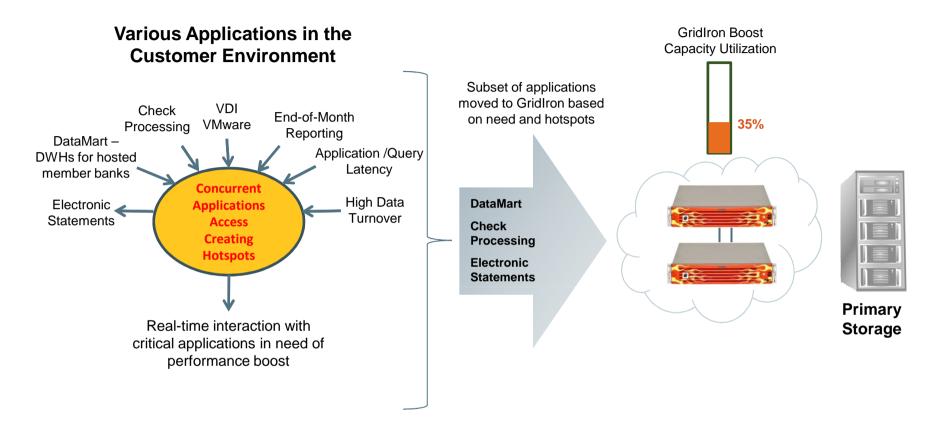
Challenges

- Slow response times of DataMart transaction analytics reports
- Meet SLAs with hosted clients using shared infrastructure
- Cost-prohibitive to dedicate infrastructure to hosted clients

Environment

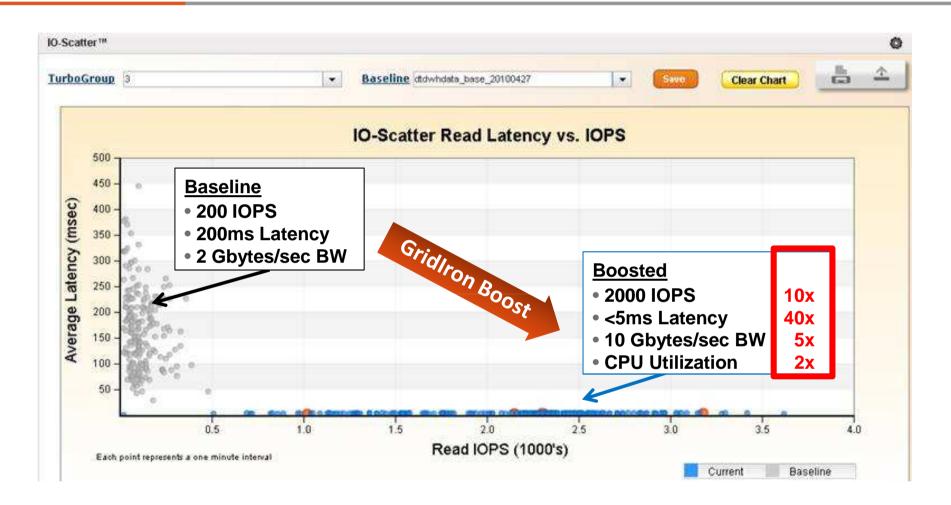
- Storage: Sun Storage 6540 Array
- Servers: Dell 1950 and 1850 servers with 4 processors
- Application: DataMart Transaction Analytics Reporting with Microsoft SQL
- FC Fabric: Brocade 48000
- GridIron: Two GT-1100A TurboChargers in an active-active high-availability cluster

Benefits


- 3x improvement in DataMart response times
- Exceeded SLAs with hosted clients
- 2x increase in hosting capacity
- Savings of \$1,275,000
- Happy clients from better user experience

"GridIron enabled us to exceed the SLAs with our hosted clients without any upgrades to our hosting infrastructure."

Mary Sokolowski, Storage Architect, COCC


Leverage Investment Across Multiple Applications

- Add performance where you need it, when you need it
- Deliver <u>concurrent</u>, <u>sustained performance</u> across multiple applications
- Fix performance hotspots in minutes, without changing apps or infrastructure

Improve Overall System Performance

Multiple applications can concurrently access the same array without interference

Dramatically Decreases Load on Back-end Storage

Backend storage array performance improves dramatically with GridIron

Storage controller has more bandwidth for writes and other tasks

TurboCharging a RAC deployment with Network Cache

Change the bandwidth physics

- Partition cache to match peak server demand
- Storage system primarily used for writes
- No data layout optimization or management required
- Scale in situ with server growth

Leave the environment untouched

- Transparent for servers, applications, storage and processes
- HA maintained via ASM and old fabric zones
- Same LUNs with same data

Score significant performance wins

- Increase concurrent bandwidth
- Decrease latency where it matters
- Reserve storage processing for writes and data management

Realize the true performance potential of Oracle and Oracle RAC by eliminating the IO bottleneck

Questions?

www.gridironsystems.com