T M S T E X A S M E M O R Y S Y S T E M S

Understanding Storage's Impact on Oracle Performance

Jamon Bowen Texas Memory Systems

Why Understanding Hardware is Important for a DBA

- One a of main features of a production system is its performance.
 - Query Tuning or Hardware selection are regularly used to address performance issues.
- Query Tuning is much like selecting the route for a cross country trip.
 - In this analogy Hardware selection is the same as selecting the mode of transport.
 - Both can have dramatic impacts on performance and work best when they are combined.
- Understanding Hardware is key to requesting the best equipment for an application.

World's Fastest Storage[®]

Terms to Understand

- Capacity amount of space used for data storage
- Bandwidth <u>How much</u> data is passed through at a given time
- IOPS <u>How many</u> reads and writes occurred on the storage at a given time (<u>Inputs & Outputs Per Sec.</u>)
- Latency <u>How quick</u> each command finished. Often referred to as response time.

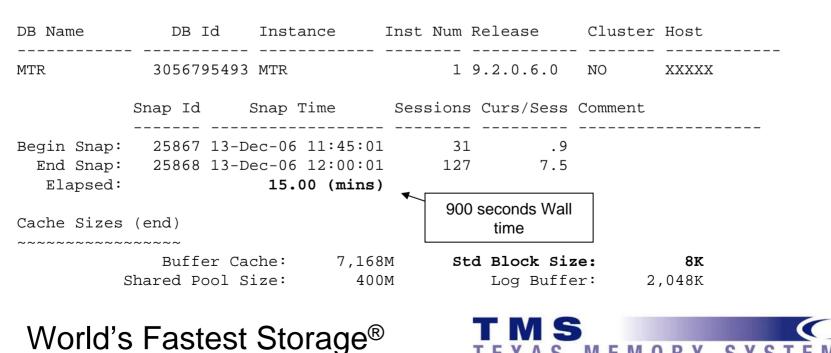
Single Disk Data

- Bandwidth
 - Depends of the drive capacity, RPM, and interface.
 - 15K RPM drives support from 40-80 MB/s
- Latency -
 - Depends on the required side to side movement of the disk head and the RPM of the drive.
 - 15K RPM drives with true Random IO support 3-10 MS latency
- IOPS
 - Depends on the latency
 - 15K RPM drives under Random IO support 100-300 IOPS

How do disks Arrays increase performance?

• Massive Arrays of Disks:

- This can ensure that access time doesn't degrade below the 5 - 10 ms Access time, and that parallel operations can be handled.
- Can increase IOPS, Bandwidth, does not impact latency.


TEXAS MEMORY SYSTEMS Using Statspack/ AWR Reports To identify IO Bottlenecks.

A S BRANDER SHILERS

RamSan-400

Statspack / AWR

Statspack is a comparison of various counters Oracle tracks over a set interval to gauge how much time was spent on various things in relation to on another. It also gives a snapshot of configuration parameters. The next few slides step through IO related sections of a single statspack

SYS

STATSPACK report for

Top 5 Timed events

The Top 5 timed events is the most important section of a statspack/AWR report for determining if an application is IO bound.

Top 5 Timed Events			
~~~~~~~~~~~~			% Total
Event	Waits	Time (s)	Ela Time
db file sequential read	8,587,142	45,110	83.20
CPU time		4,981	9.19
latch free	109,044	1,420	2.62
buffer busy waits	46,525	1,305	2.41
db file parallel read	23,687	744	1.37

The YAPP method. Single Block Rea

Single Block Read, 5.25 mS per wait.

9,541 Waits per second.

These Correspond to physical read IOs



## Major IO Related Waits

Event db file sequential read	<b>Description</b> The sequential read event is caused by reads of single blocks by the Oracle Database of a table or index.
db file scattered read	The scattered read event is caused by reads of multiple blocks by the Oracle Database of a table or index.
CPU time	This is the amount of time that the Oracle database spent processing SQL statements, parsing statements, or managing the buffer case. Tuning the SQL statements and procedures, or increasing the server's CPU resources generally best reduce this event.
log file parallel write	This event is caused by waiting for the writes of the redo records to the redo log files.
log file sync	This event is caused by waiting for the LGWR to post after a session performs a commit. This can be tuned by reducing the number of commits.
free buffer wait	This wait occurs when a session needs a free buffer and cannot find one. A slow DBWR process that cannot quickly flush dirty blocks from the buffer cache can cause this. This wait can also occur is one session requests a buffer that another session has requested from disk.



## Determining the Database IO load

Load Profile		
~~~~~~	Per Second	Per Transaction
Redo size	17,007.41	16,619.62
Logical reads	351,501.17	343,486.49
Block changes	125.08	122.23
Physical reads	11,140.07	10,886.06
A Physical writes:	1,309.27	1,279.41
User calls	7,665.49	7,490.70
/ Parses	14.34	14.02
Hard parses	4.36	4.26
/ Sorts	2.85	2.78
/ Logons	0.17	0.17
Executes	22.41	21.90
Transactions:	1.02	

Note these are Blocks per second (not reads per second). 8k Block size = 87 MB/s read, 10 MB/s write.

J Dece C'

Tablespace IO Stats

Tablespace IO Stats for DB: MTR Instance: MTR Snaps: 25867 -25868 ->ordered by IOs (Reads + Writes) desc

Tablespace

	Reads	Av Reads/s	Av Rd(ms)	Av Blks/Rd	Writes	Av Writes/s	Buffer Waits	Av Buf Wt(ms)
MSERVEF	RTAB							
-	861,586	8,735	5.5	1.0	59,214	66	45,542	28.9
MSERVEF	884,275	983	5.0	1.0	24,261	27	925	19.1
TEMP								
TOOT O	122,465	136	7.7	8.9	121,028	134	0	0.0
TOOLS	1,166	1	1.3	1.5	452	1	0	0.0
UNDOTBS	31 66	0	5.6	1.0	353	0	2	0.0
SYSTEM		C C	0.0			C C	_	
	51	0	9.0	1.0	9	0	0	0.0
		••••••						-

These are read/write IOs per second. 9,855 Read IOPS, 227 write IOPS. The average read response time is ~5.5 ms.

SYST

E

MS

EM

IVI

World's Fastest Storage[®]

Instance Activity Stats

Instance Activity Stats for DB: MTR	Instance: MTR Sna	ps: 25867 -258	68
Statistic	Total	per Second	per Trans
physical reads	10,026,061	11,140.1	10,886.1
physical reads direct	1,087,774	1,208.6	1,181.1
physical writes	1,178,340	1,309.3	1,279.4
physical writes direct	1,093,945	1,215.5	1,187.8
physical writes non checkpoint	1,178,292	1,309.2	1,279.4
•••			
redo blocks written	15,984	17.8	17.4
redo buffer allocation retries	0	0.0	0.0
redo entries	104,742	116.4	113.7
redo log space requests	0	0.0	0.0
redo log space wait time	0	0.0	0.0
redo ordering marks	0	0.0	0.0
redo size	15,306,672	17,007.4	16,619.6
redo synch time	421	0.5	0.5
redo synch writes	1,056	1.2	1.2
redo wastage	697,864	775.4	757.7
redo write time	638	0.7	0.7
redo writer latching time	12	0.0	0.0
redo writes	1,267	1.4	1.4

Overall IO analysis

- Single Block waits are a significant Database Wait event.
- Read IO load is high, 87 MB/s, 9,855 Read IOPS
- Storage Response time is good for an array under this load: 5.5 mS per read.

Conclusion:

Storage with a lower response time can improve the database performance. Adding additional spindles to the array is likely to only have minimal results. World's Fastest Storage[®]

AWR/ Oracle 10g New IO Counters

Instance Activity Stats DB/Inst: RAMSAN/ramsan Snaps: 22-23

Statistic	Total	per Second	per Trans
physical read IO requests physical read bytes	302,759 35,364,380,672		20,183.9 ######### ###########################
physical read total IO requests physical read total bytes	302,945 35,367,449,600	4,808.7 561,388,088.9	20,196.3 ############
physical read total multi block r	292,958	4,650.1	-
physical reads	4,316,960	68,523.2	287 , 797.3
physical reads cache	4,316,941	68,522.9	287,796.1
physical reads cache prefetch	4,014,197	63,717.4	267,613.1
physical reads direct	0	0.0	0.0
physical reads direct temporary t	0	0.0	0.0
physical reads prefetch warmup	0	0.0	0.0
physical write IO requests	484	7.7	32.3
physical write bytes	5,398,528	85,690.9	359,901.9
physical write total IO requests	615	9.8	41.0
physical write total bytes	7,723,520	122,595.6	514,901.3
physical write total multi block	124	2.0	8.3
physical writes	659	10.5	43.9
physical writes direct	0	0.0	0.0
physical writes from cache	659	10.5	43.9
physical writes non checkpoint	582	9.2	38.8

World's Fastest Storage[®]

TMS TEXAS MEMORY SYSTEMS

ORioN – Oracle's Storage Benchmarking Tool

ORioN – Oracle I/O Numbers

- Tool designed to predict the performance of an Oracle database without having to install Oracle or create a database.
- Designed expressly to simulate Oracle IO by using the same software stack.
- Can simulate the effect of striping on performance done by ASM.
- Simulates both OLTP and data warehouse loads.

Where can I get ORioN

• Available here:

- http://www.oracle.com/technology/software/tech/orion/
 - Requires free Oracle Technology Network login
- Binaries available for:
 - Linux/Solaris
 - Windows
 - EM64 Linux

Using ORioN

- Command line driven utility, however, a configuration file is also required.
- EX: orion –run simple –testname <Configuation File> -num_disks 8
- Configuration File
 - Contains the path to the physical LUNs to test
 - -Windows EX: "\\.\e:" for the E: drive
 - Linux /dev/sda
- Allows multiple drives for ASM striping

Command Line Options for predefined tests

- -run <simple, normal, advanced>
 - Simple: 30-50 minute test for baseline IOPS, Bandwidth and Latency.
 - Normal: full day test of different combinations of 8K and 1024 K random reads. Fully maps out read performance.
- -num_disks <#>
 - Increases maximum load and range for storage systems with higher disk counts.
- -testname <testname.lun>
 - The name of the configuration file that identifies the test LUNs
- (optional) –cache_size <#>
 - Specifics the size of the cache on the LUN in MB. Based on this number ORioN will warm the cache with random 1 MB reads to prevent cache masking true performance.

Output

- 5 files
 - <testname>_iops.csv
 - Matrix of the IO per second as the number of concurrent 8K and 1024 KB random reads varies.
 - <testname>_lat.csv
 - Matrix of the average latency as the number of concurrent 8K and 1024 KB random reads varies.
 - <testname>_mbps.csv
 - Matrix of the average MB per second as the number of concurrent 8K and 1024 KB random reads varies.
 - <testname>_summary.txt
 - List of all input parameters, information on the LUNs tested
 - Maximum MBPS, IOPS, and minimum latency recorded.
 - <testname>_trace.txt
 - Verbose test output.

Mytest_iops.csv Example

Large/Small	1	2	4	6	8	10	12	14
0	10360	18692	34592	37556	40038	40990	41041	41285
1								
2								
3								

World's Fastest Storage[®]

TMS TEXAS MEMORY SYSTEMS

RamSan-400

Texas Memory Systems, Inc www.SuperSSD.com

RamSan Solid State Disks

Menu

Select

T A S BORNESSER

Texas Memory Systems, Inc. Some RamSan customers ...

- World's Fastest Storage[®]
- Over 30 years of experience with high bandwidth and low latency architectures
- Delivering tenth generation SSD
- Privately owned with no debt/venture capital
- Repeat customers demonstrate high customer satisfaction:

TRASMEMORY SYSTEMS RamSan Solid State Disks: Performance

Manu

Select

T N S BORNESSER

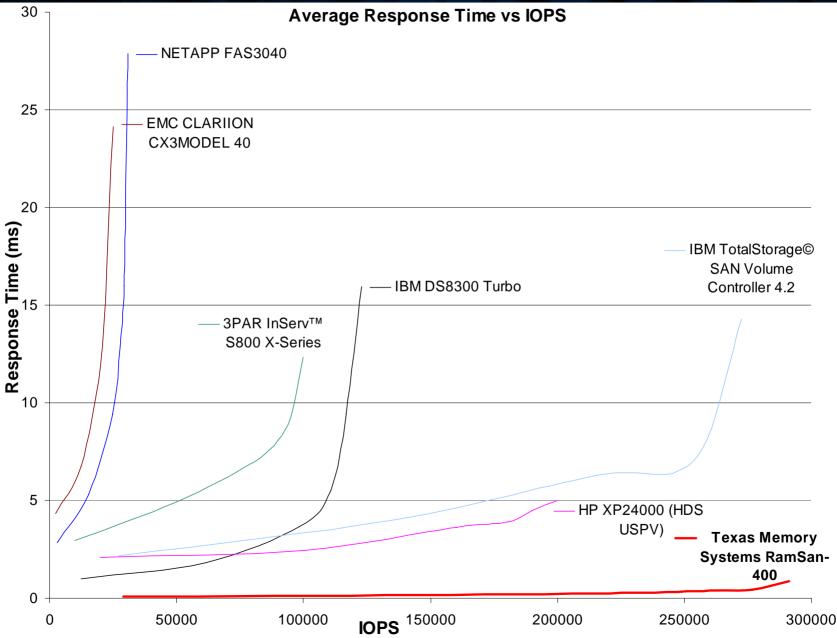
RamSan-400

Texas Memory Systems, In: www.SuperSSD.com

Why Oracle Performance Increases with the RamSan

- Many Oracle deployments spend a significant amount of time waiting on a large number of IOs
- The RamSan does nothing to reduce the number of times that Oracle waits on IO, it just significantly reduces the duration of each wait
- The degree to which the database is waiting on IO before the RamSan is deployed determines how large the performance gain.

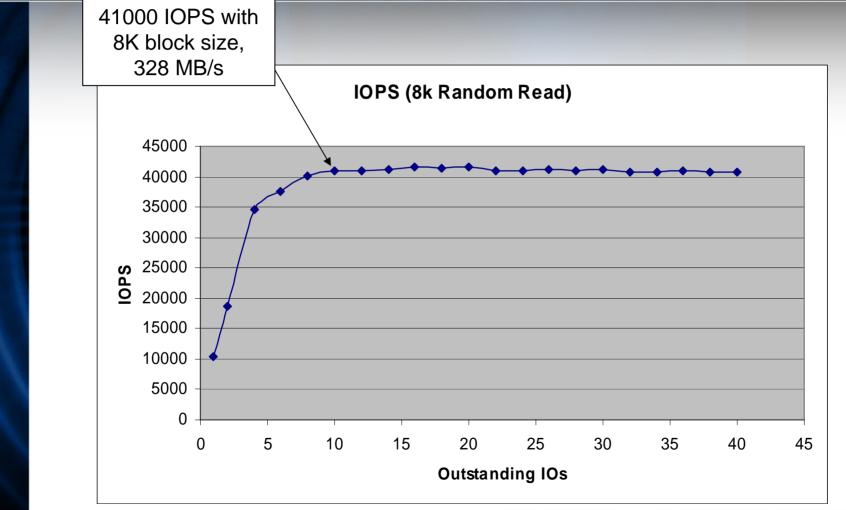
SPC-1 Report


SPC-1 IOPS™ Results SPC-1 IOPS: **291,208.58** \$/SPC-1 IOPS: **\$0.67**

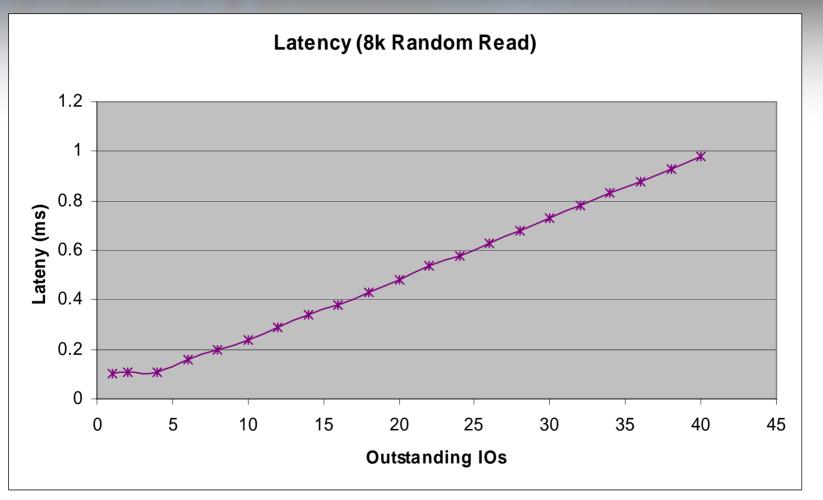
In 2008, SPC-1 Ranked the RamSan-400 as: **#1** for **Performance** <u>AND</u> **#1** for **Price/Performance**.

T M S TEXAS MEMORY SYSTEMS

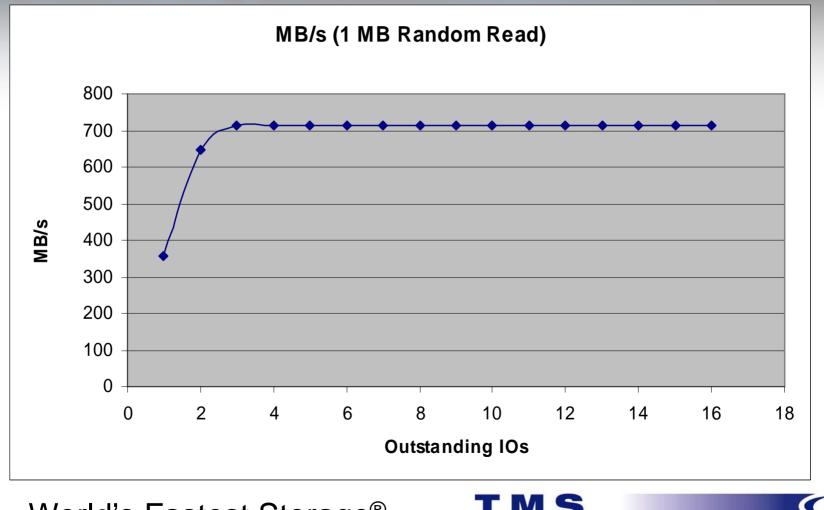
SPC-1: Comparing Results (www.storageperformance.org)


ORioN Tests

- Setup
 - Pentium-D (3.0 GHz) Dell PowerEdge 850
 - Qlogic QLE2462 4 Gbps HBA
 - 32 GB RamSan
 - 2 Fibre channel connection


IOPS Results

World's Fastest Storage[®]



Latency Result

Bandwidth Results

The RamSan's Effect On Oracle

- Has no direct impact on the Number of IO related waits that occur, only on the amount of time that each wait takes. For a batch job the IO load will increase quite a bit with faster storage. For an OLTP load the IO load will not necessarily increase, but the end user response time will decrease.
- If the % of time that the database or the user spends waiting on IO is significant, the RamSan can offer considerable gains.

After the RamSan for the Same Database Examined Earlier

Before the RamSan Top 5 Timed Events			% Total
Event	Waits	Time (s)	Ela Time
db file sequential read	8,587,142	45,110	83.20
CPU time		4,981	9.19
latch free	109,044	1,420	2.62
buffer busy waits	46,525	1,305	2.41
db file parallel read	23,687	744	1.37

After the RamSan - Note that even thought the # of waits increased significantly, the total time for waits decreased.

Top 5 Timed Events

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Waits	Time (s) E	% Total la Time
db file sequential read	20,159,505	22,973	64.32
CPU time		9,887	27.68
db file scattered read	97,723	992	2.78
buffer busy waits	63,767	855	2.39
db file parallel read	85,300	657	1.84

______



## **TRASMEMORY SYSTEMS** RamSan Solid State Disks: Product Line

M S BORNESSERECS

RamSan-400

## **Overview of RamSan Solid State Disks**

	Randam-200	Rendard 10	Randan 600	
<b>Feature</b>	RamSan-300	RamSan-400	RamSan-500	
Media	DDR RAM	DDR RAM	Cached Flash	
Size	3U x 17"	3U x 25"	4U x 20"	
Latency	15 microsecond	15 microsecond	200 microseconds	
Capacity	16 to 32GB	32 to 128GB	1024 GB to 2048GB	
Bandwidth	1.5 GB/sec	3 GB/sec	2 GB/sec	
Random IOPS	200,000	400,000	100,000 4 Gbit FC	
Interface	4Gbit FC or IB	4Gbit FC or IB	2 to 8	
Ports	2 to 4	2 to 8	Up to 1024 LUNs	
LUN Mapping	Up to1024 LUNs	Up to 1024 LUNs	Yes	
LUN Masking	Yes	Yes	Yes	
Hot Swap Power	Yes	Yes	Yes	
Non-Volatile	Yes	Yes	Chipkill™, RAID	
Error Protection	Chipkill™	Chipkill™		
World's Fast	test Storage®	TMS		B.F
	<u> </u>	IEXAS	MEMURY SYSTE	N

EMS

## Statspackanalyzer.com

## Free Statspack/AWR analysis

- -Looks for IO bottlenecks and other configuration issues.
- -Straightforward Tuning advice



World's Fastest Storage[®]

