
1 of 53

Dr. Paul Dorsey,
Michael Rosenblum

Dulcian, Inc.

NYOUG Web SIG
August 7, 2008

"Thick Database" Techniques for
Fusion (and other Web) Developers

2 of 53

“Thick Database” Approach (1)

Micro-Service-Oriented-Architecture (M-SOA)
Service Component Architecture (SCA)
Division between the database and user interface (UI)
portions.
Two key features involved in "thick database thinking":

Nothing in the UI ever directly interacts with a database table.
All interaction is accomplished through database views or APIs.
Nearly all application behavior (including screen navigation) is
handled in the database.

Thick database does not simply mean stuffing everything
into the database and hoping for the best.

3 of 53

“Thick Database” Approach (2)

Creating a thick database makes your application
UI technology-independent.

Creates reusable, UI technology-independent views
and APIs.
Reduces the complexity of UI development.
Database provides needed objects.
Reduces the burden on the UI developer

4 of 53

Thick Database Benefits

Minimizes development risk
Helps build working applications that scale well.
Benefit Metrics:

Better performance (10X)
Less network traffic (100X)
Less code (2X)
Fewer application servers (3X)
Fewer database resources (2X)
Faster development (2X)

5 of 53

Easier to Refactor

UI technology stack changes are common.
The .Net vs. Java EE battle rages on.
Web architecture is more volatile than the
database platform.
Defense against the chaos of a rapidly evolving
standard.
Test: What is the probability that your web UI
standards will be the same in 18 months?

Answer 0%

6 of 53

How Thick is too Thick?

What would happen if 100% of all UI logic were
placed in the database?

Tabbing out of a field
LOV populated from database
Page navigation

Pathologically complete way to implement the
thick database approach.
A system built this way would be sub-optimal.

But it works

7 of 53

How Thin is too Thin?

Can a skilled team successfully build
applications that are 100% database “thin”?

Requires a highly skilled team.
Minimize round trips
ANY middle tier technology (e.g. BPEL) can also be
a performance killer.

Possible but difficult

8 of 53

De-Normalized Views

9 of 53

The idea:
Convert relational data into something that will make
user interface development easier.
Easiest way to separate data representation in the
front-end from the real model.

The solution:
Use a view with a set of INSTEAD-OF triggers

De-Normalized Views

10 of 53

create or replace view v_customer
as
select c.cust_id,

c.name_tx,
a.addr_id,
a.street_tx,
a.state_cd,
a.postal_cd

from customer c
left outer join address a

on c.cust_id = a.cust_id

De-Normalized view

11 of 53

create or replace trigger v_customer_ii
instead of insert on v_customer
declare

v_cust_id customer.cust_id%rowtype;
begin

if :new.name_tx is not null then
insert into customer (cust_id,name_tx)
values(object_seq.nextval,:new.name_tx)
returning cust_id into v_cust_id;
if :new.street_tx is not null then
insert into address (addr_id,street_tx,

state_cd, postal_cd, cust_id)
values (object_seq.nextval,:new.street_tx,
:new.state_cd,:new.postal_cd, v_cust_id);

end if;
end;

INSTEAD-OF Insert

12 of 53

Collections

13 of 53

Using Collections

Sometimes it is just not possible to represent all
required functionality in a single SQL statement.
Denormalized view cannot be built.
Oracle provides a different mechanism:

Collections allow you to hide the data separation, as
well as all of the transformation logic.

14 of 53

What is a collection?

Definition:
An ordered group of elements, all of the same type,
addressed by a unique subscript.

Implementation:
Since all collections represent data, they are defined
as data types.

Three types
Nested Tables
Associative Arrays
Variable-size arrays (V-Arrays)

15 of 53

Why use collections?

Logical reason:
Collections allow you to articulate and manipulate
sets of data.

Technical reason:
Processing data in sets is “usually” faster than doing
so one element at a time.

Physical reason:
Manipulating sets in memory is “usually” 100 times
faster than manipulating sets on the storage device.

16 of 53

Possible Issues

Technical problem:
Amount of memory is limited (especially in 32-bit
architecture)

Economic problem:
Storage is cheap – memory is NOT.

Learning curve:
People who are used to old habits of processing one
row at a time (since COBOL days) will have
problems working with sets.

17 of 53

Nested Tables:
Function-Based Views

18 of 53

Nested Tables (1)
Nested tables – arbitrary
group of elements of the
same type with sequential
numbers as a subscript

Undefined number of
elements (added/removed on
the fly)
Not dense (objects could be
removed from inside)
Available in SQL and
PL/SQL
Very useful in PL/SQL! (but
not in tables)

June

April

September

July

August

March

January

6

4

9

7

8

3

1

table of varchar2(30)

…

19 of 53

Nested Tables (2)

Definition:
declare
type NestedTable is

table of ElementType;
...
create or replace type NestedTable

is table of ElementType;

20 of 53

More About Nested Tables

Nested tables can be used in SQL queries with
the special operator: TABLE

Allows hiding of complex procedural logic “under
the hood”
Nested table type must be declared as a user-defined
type (CREATE OR REPLACE TYPE…)

21 of 53

Nested Tables – Example 1a

Specify exactly what is needed as output
and declare the corresponding collection:

Create type lov_oty is object
(id_nr NUMBER,
display_tx VARCHAR2(256));

Create type lov_nt
as table of lov_oty;

22 of 53

Nested Tables - Example 1b
Write a PL/SQL function to hide all required logic

function f_getLov_nt
(i_table_tx,i_id_tx,i_display_tx,i_order_tx)

return lov_nt is
v_out_nt lov_nt := lov_nt();

begin
execute immediate
'select lov_oty('

||i_id_tx||','||i_display_tx||
')'||

' from '||i_table_tx||
' order by '||i_order_tx

bulk collect into v_out_nt;
return v_out_nt;

end;

23 of 53

Nested Tables - Example 1c
Test SQL statement with the following code:

select id_nr, display_tx
from table(

cast(f_getLov_nt
('emp',
'empno',
'ename||''-''||job',
'ename')

as lov_nt)
)

24 of 53

Nested Tables - Example 1d

Create a VIEW on the top of the SQL statement.
Completely hides the underlying logic from the UI
INSTEAD-OF triggers make logic bi-directional
Minor problem: There is still no way of passing parameters
into the view other than some kind of global.

Create or replace view v_generic_lov as
select id_nr, display_tx
from table(cast(f_getLov_nt

(GV_pkg.f_getCurTable,
GV_pkg.f_getPK(GV_pkg.f_getCurTable),
GV_pkg.f_getDSP(GV_pkg.f_getCurTable),
GV_pkg.f_getSORT(GV_pkg.f_getCurTable))

as lov_nt)
)

25 of 53

Associative Arrays:
Optimizing Database Processing

26 of 53

Associative Arrays (1)

An associative array is a
collection of elements that
uses arbitrary numbers and
strings for subscript values

PL/SQL only
Still useful

April

June

December

2000

1995

1990

Table of varchar2(30)
Index by binary_integer

…

…

…

27 of 53

Associative Arrays (2)

Definition:
declare
type NestedTable is

table of ElementType
index by Varchar2([N]);

...
type NestedTable is

table of ElementType
index by binary_integer;

28 of 53

Key New Feature

Index by VARCHAR2 instead of by
BINARY_INTEGER

Cannot be used in a FOR-loop
Allow creation of simple composite keys with direct
access to the row in memory

29 of 53

Associative Arrays - Example 1a
Prepare memory structure

declare
type list_aa is table of VARCHAR2(2000)

index by VARCHAR2(256);
v_list_aa list_aa;
cursor c_emp is
select ename, deptno,to_char(hiredate,'q') q_nr
from emp;
v_key_tx VARCHAR2(256);

begin
for r_d in (select deptno from dept order by 1) loop
v_list_aa(r_d.deptno||'|1'):=

'Q1 Dept#' ||r_d.deptno||':';
v_list_aa(r_d.deptno||'|2'):=

'Q2 Dept#' ||r_d.deptno||':';
...

end loop;

30 of 53

Associative Arrays - Example 1b
Process data and present results
...

for r_emp in c_emp loop
v_list_aa(r_emp.deptno||'|'||r_emp.q_nr):=

list_aa(r_emp.deptno||'|'||r_emp.q_nr)||
' '||r_emp.ename;

end loop;

v_key_tx:=v_list_aa.first;
loop
DBMS_OUTPUT.put_line

(v_list_aa(v_key_tx));
v_key_tx:=v_list_aa.next(v_key_tx);
exit when v_key_tx is null;

end loop;
end;

31 of 53

Bulk Operations

32 of 53

BULK COLLECT (1)

BULK COLLECT clause
The idea:

Fetch a group of rows all at once to the collection
Control a number of fetched rows (LIMIT)

Risks:
Does not raise NO_DATA_FOUND
Could run out of memory

33 of 53

BULK COLLECT (2)
Syntax:
select …
bulk collect into Collection
from Table;

update …
returning … bulk collect into
Collection;

fetch Cursor
bulk collect into Collection;

34 of 53

BULK COLLECT example
declare

type emp_nt is table of emp%rowtype;
v_emp_nt emp_nt;

cursor c_emp is select * from emp;
begin

open c_emp;
loop
fetch c_emp
bulk collect into v_emp_nt limit 100;
p_proccess_row (v_emp_nt);
exit when c_emp%NOTFOUND;

end loop;
close c_emp;

end;

35 of 53

FORALL (1)

FORALL command
The idea:

Apply the same action for all elements in the
collection.
Have only one context switch between SQL and
PL/SQL

Risks:
Special care is required if only some actions from
the set succeeded

36 of 53

FORALL (2)

Syntax:
forall Index in lower..upper
update … set … where id = Collection(i)

...
forall Index in lower..upper
execute immediate ‘…’
using Collection(i);

37 of 53

FORALL (3)
Restrictions:

Only a single command can be executed.
Must reference at least one collection inside the loop
All subscripts between lower and upper limits must
exist.
Cannot work with associative array INDEX BY
VARCHAR2
Cannot use the same collection in SET and WHERE
Cannot refer to the individual column on the
object/record (only the whole object)

38 of 53

FORALL Example

declare
type number_nt is table of NUMBER;
v_deptNo_nt number_nt:=number_nt(10,20);

begin
forall i in v_deptNo_nt.first()

..v_deptNo_nt.last()
update emp
set sal=sal+10

where deptNo=v_deptNo_nt(i);
end;

39 of 53

Conclusions

The #1 critical success factor for any web development
is effective utilization of the database.
PL/SQL is not irrelevant (and it continues to improve).
Code that needs to access the database is faster if it is
placed in the database.
Database independence is irrelevant

UI technology independence is more important.

Just because everyone is moving logic to the middle
tier, does not make it a smart idea.

40 of 53

100% Repository-Based
Application Development

41 of 53

BRIM® Web 3.0
User Interface (BRIM_UI)

Complete Thick Database
Minimal web traffic required

Fastest web applications ever
Full client/server functionality on the web (Forms-like)
2 days of training to learn

Basic XML
Coding is all PL/SQL
Easier than Oracle Forms

Deployment stack-independent (Java EE, .Net)
Rapid development
Ultra-secure

42 of 53

Part of the Total BRIM® Solution

BRIM® Objects
Data Model
Process Flow
Data Validation

BRIM ® Mapper
ETL, Web Service generation

BRIM ® Web 3.0
User interface

43 of 53

Two Big Ideas

A totally new web architecture
Event – Action Model
Enabling technology

Repository-based UI tool
Simple repository
PL/SQL is the scripting language

44 of 53

Traditional Web Applications

Application
Server1. Send

all data
on page

Database
Server

2. Data
Request

3. Server-side
actions

6. Render
screen 5. Send

entire/portion
page back

4. Return
Data

45 of 53

BRIM® Web 3.0 Architecture

Application
Server

1. Send
changed
part of
screen Database

Server

2. Pass
request to

engine

4. Pass actions
as XML5. Pass actions

to client

3. Process
request

6. Process
actions

46 of 53

System Architecture

Client

Rules engineevents
Event Detector/

Transmitter

Application
Server

Database
Server

Action Interpreter actions

47 of 53

What makes it work?

Little code on the client
Repository on the database
Copy of the application state on the database
Nothing in the application server
Client-side code engine

48 of 53

Repository Data Model

SCREEN

TREE MENU

SCREEN
COMPONENT

0..1

EVENT 1

ACTION

FIELD FRAME

1

Pointer to
PL/SQL
Program

Unit

49 of 53

Sample Screen

Name

First Name

Submit

Last Name

50 of 53

XML to Create Screen
Code to build screen:
<actionSet Session = 12345>
<Screen ID=”1” Title="Name" Modal="Y" Position="center"

Resize="N" Height="200" Width="440" FontData="Tahoma"
FontLabel="Dialog" FontDataSize="11" FontLabelSize="11"
FontDataBold="N" FontLabelBold="Y"

FontDataItalic="N" FontLabelItalic="N" FontDataColor="black"
FontLabelColor="black">

<ScreenElement Type="Field" Value="John" ID=”111”
Label="First Name" LabelPosition="Left" Editable="Y"

PositionX="230" PositionY="100" Width="80"/>
<ScreenElement Type="Field" Value="Jones" ID=”222”
Label="Last Name" LabelPosition="Left" Editable="Y"

PositionX="230" PositionY="200" Width="80"/>
<ScreenElement Type="Button" PositionX="120" PositionY="300"

Width="80" Label="Submit" ID=”333” LabelPosition="Center"
Action="Press"/>

</Screen>
</actionSet>

51 of 53

Why does it work?

Transmit
<session 12345 >

<Button ID="10"
Event = "Press" />

<Field ID = "20"
Value = "MyNewValue" />

</session>

Return
<Actions>

<Field ID = "30"
Value = "Update successful“/>

</Actions>

52 of 53

Performance Comparisons

BRIM Web 3.0 ADF Faces

Initial load 350 KB (V0) 177 KB

Load screen 2KB 41 KB

Update screen 0.4KB 41 KB

Tree control .1 KB – 10 KB
Only changed
nodes

200 KB
Whole tree each
time

53 of 53

Dulcian’s BRIM® UI

100% generation and maintenance of user
interfaces

No hand coding except for views and complex
routines

10-100X better performance
Platform-independent
Full client/server functionality on the web
90% auto-conversion from Oracle Forms

54 of 53

Contact Info
Dr. Paul Dorsey – paul_dorsey@dulcian.com
Michael Rosenblum – mrosenblum@dulcian.com
Dulcian website - www.dulcian.com

Developer Advanced
Forms & Reports
Developer Advanced
Forms & Reports Designer

Handbook
Designer
Handbook

Available now!
Oracle PL/SQL for Dummies

Design Using UML
Object Modeling
Design Using UML
Object Modeling

	"Thick Database" Techniques for Fusion (and other Web) Developers
	“Thick Database” Approach (1)
	“Thick Database” Approach (2)
	Thick Database Benefits
	Easier to Refactor
	How Thick is too Thick?
	How Thin is too Thin?
	De-Normalized Views
	De-Normalized Views
	De-Normalized view
	INSTEAD-OF Insert
	Collections
	Using Collections
	What is a collection?
	Why use collections?
	Possible Issues
	Nested Tables: �Function-Based Views
	Nested Tables (1)
	Nested Tables (2)
	More About Nested Tables
	Nested Tables – Example 1a
	Nested Tables - Example 1b
	Nested Tables - Example 1c
	Nested Tables - Example 1d
	Associative Arrays:�Optimizing Database Processing
	Associative Arrays (1)
	Associative Arrays (2)
	Key New Feature
	Associative Arrays - Example 1a
	Associative Arrays - Example 1b
	Bulk Operations
	BULK COLLECT (1)
	BULK COLLECT (2)
	BULK COLLECT example
	FORALL (1)
	FORALL (2)
	FORALL (3)
	FORALL Example
	Conclusions
	100% Repository-Based �Application Development
	BRIM® Web 3.0�User Interface (BRIM_UI)
	Part of the Total BRIM® Solution
	Two Big Ideas
	Traditional Web Applications
	BRIM® Web 3.0 Architecture
	System Architecture
	What makes it work?
	Repository Data Model
	Sample Screen
	XML to Create Screen
	Why does it work?
	Performance Comparisons
	Dulcian’s BRIM® UI
	Contact Info

