

In This Issue –

Presentation Papers from the March 2014 General Meeting
Expanding the SQL Horizons: PL/SQL User-Defined Functions in the Real World, by Michael Rosenblum
RMAN 12c – Recover Table, by Timothy Vaughn
Big Data and Mobile: What They Mean for PL/SQL Developers, by Frédéric Desbiens

www.nyoug.org 212.978.8890

TechJournal
New York Oracle Users Group

First Quarter 2014

First Quarter General Meeting

Wednesday, March 12, 2014
St. John’s University – Manhattan Campus

101 Murray Street

Free for Paid 2014 Members
Don’t Miss It!

COMPLETE!

info@axxana.com • www.axxana.com

DATABASE RECOVERY HAS NEVER BEEN SO

Axxana’s award winning Phoenix System offering
unprecedented Data Protection, Cross-application
consistency, Storage and Replication agnostic.

COMPLETE!

www.nyoug.org 212.978.8890 3

NYOUG Officers / Chairpersons

ELECTED OFFICERS - 2013

President
Michael Olin
president@nyoug.org

Vice President
Mike La Magna
vicepresident@nyoug.org

Executive Director
Caryl Lee Fisher
execdir@nyoug.org

Treasurer
Robert Edwards
treasurer@nyoug.org

Secretary
Cathy Wang-Wender
secretary@nyoug.org

CHAIRPERSONS

Chairperson / WebMaster
Thomas Petite
info@nyoug.org

Chairperson / Technical Journal Editor
Melanie Caffrey
editor@nyoug.org

Chairperson / Member Services
Robert Edwards
membership@nyoug.org

Chairperson / Speaker Coordinator
Caryl Lee Fisher
speakers@nyoug.org

Chairperson / Vendor Relations
Caryl Lee Fisher
vendorcoordinator@nyoug.org

Chairperson / DBA SIG
Simay Alpoge
dbasig@nyoug.org

Chairperson / Data Warehousing SIG
Vikas Sawhney
dwsig@nyoug.org

Chairperson / Web SIG
Coleman Leviter
websig@nyoug.org

Chairperson / Long Island SIG
Simay Alpoge
lisig@nyoug.org

Director / Strategic Planning
Carl Esposito
planning@nyoug.org

CHAIRPERSON / VENUE COORDINATOR

Michael Medved
venuecoordinator@nyoug.org

EDITORS – TECH JOURNAL

Associate Editor
Jonathan F. Miller
jonathanfmiller@earthlink.net

Contributing Editor
Arup Nanda - DBA Corner

Contributing Editor
Jeff Bernknopf - Developers Corner

ORACLE LIAISON Emeritus

Kim Marie Ruquet

PRESIDENTS EMERITUS OF NYOUG

Founder / President Emeritus
Moshe Tamir

President Emeritus
Tony Ziemba

Chairman / President Emeritus
Carl Esposito
cesposi@bers.nyc.gov

President Emeritus
Dr. Paul Dorsey

www.nyoug.org 212.978.8890 4

Table of Contents

Spring General Meeting – March 12, 2014 Agenda ... 5
Message from the President’s Desk .. 9
Editor’s Corner .. 11
RMAN 12c - Recover Table ... 12
Big Data and Mobile: What They Mean for PL/SQL Developers .. 18
The Captain of New York – Excelsior! .. 22
Edition-Based Redefinition: Testing App Upgrades without Being Live .. 26
Expanding the SQL Horizons: PL/SQL User-Defined Functions in the Real World ... 35

Legal Notice
Copyright© 2014 New York Oracle Users Group, Inc. unless otherwise indicated. All rights reserved. No part of this
publication may be reprinted or reproduced without permission.

The information is provided on an “as is” basis. The authors, contributors, editors, publishers, NYOUG, Oracle
Corporation shall have neither the liability nor responsibility to any person or entity with respect to any loss or damages
arising from information contained in this publication or from use of programs or program segments that are included.
This magazine is not a publication of Oracle Corporation nor was it produced in conjunction with Oracle Corporation.

New York Oracle Users Group, Inc.
#0208
67 Wall Street, 22nd floor
New York, NY 10005-3198
(212) 978-8890

www.nyoug.org 5 212.978.8890

Spring General Meeting – March 12, 2014 Agenda

AGENDA
Time Activity Track/Room Presenter

8:30-9:00 REGISTRATION AND BREAKFAST

9:00-9:30
Opening Remarks

General Information
(single session)

Auditorium
Michael Olin

NYOUG President

SESSION 1
9:30-10:30

KEYNOTE: Who is the Next Target and How Can Oracle
Help?

(single session)
Auditorium

Ulf Mattsson
Protegrity

10:30-10:45 BREAK

SESSION 2
10:45 -11:45

Agile Data Platform: Revolutionizing Database Cloning

DBA
Auditorium

Kyle Hailey
Delphix

Drinking the Kool-Aid – My Journey to Becoming an ADF
Believer

Developer
Room 118

Rob Nocera
NEOS, LLC

SESSION 3
11:45 -12:30

Ask the Experts Panel
(single session)

Auditorium
Michael Olin

Moderator

12:30 -1:30 LUNCH - ROOM 123

SESSION 4
1:30-2:30

Why You Should Run Oracle on SPARC Solaris
DBA

Auditorium
Paul Baumgartel

Oracle Corp.
Expanding the SQL Horizons: PL/SQL User-Defined

Functions in the Real World
Developer
Room 118

Michael Rosenblum
Dulcian, Inc.

2:30-2:45 BREAK

SESSION 5
2:45-3:45

Building Oracle on Flash Arrays

DBA
Auditorium

Gil Standen
Violin Memory

Simplify Enterprise Mobility: An Overview of Oracle's Mobile

Strategy

Developer
Room 118

Frederic Desbiens
Oracle Corp.

SESSION 6
4:00-5:00

The Oracle Database Backup Logging Recovery Appliance:
Revolutionize Oracle Data Protection

DBA
Auditorium

Timothy Chien
Oracle Corp.

Setting up OBIEE on a Snowflake-Heavy Data Warehouse
Developer
Room 118

Rebecca Widom
NYC HRA

www.nyoug.org 212.978.8890 6

ABSTRACTS
 9:30-10:30 AM KEYNOTE: Who is the Next Target and How Can Oracle Help?

Old security approaches are based on finding malware and data leaks. This is like "boiling the ocean," since you are
“patching” all possible data paths and data stores, and you may not even find a trace of an attack. New security
approaches assume that you are under attack and focus instead on protecting the data itself, even in computer memory
(the “target” for a growing number of attacks). This session discusses what companies can do now to prevent what
happened to Target and others processing PII, PHI and PCI data. The Oracle Big Data Appliance is a critical part of the
solution.

Ulf Mattsson created the innovative architecture of the Protegrity Data Security Platform. He is commonly
considered one of the founding fathers of tokenization and has been advising the industry’s top analysts and
stakeholders including PCI Security Standards Council, ISACA and Visa as they navigate the role of tokenization in
payment security. Ulf is the inventor of more than 20 patents in the areas of encryption key management, policy-
driven data encryption, internal threat protection, data usage control and intrusion prevention. He also is a research
member of the International Federation for Information Processing (IFIP) WG 11.3 Data and Application Security,
ANSI X9, Information Systems Security Association (ISSA) and Information Systems Audit and Control
Association (ISACA).

 10:45-11:45 AM DBA TRACK: Agile Data Platform: Revolutionizing Database Cloning

Database Virtualization allows the same data files to be shared by multiple clones allowing almost instantaneous
creation of new copies of databases with almost no disk footprint. Along with storage efficiency, database
virtualization allows agile management of database copies. The data agility eliminates bottlenecks in development by
removing wait time for creating database environments, allows each developer to have his/her own full copy of the
database and provides QA and UAT with immediate copies of the development environments for testing. How would it
impact your company to create as many database copies as fast as you needed to with no storage impact? This
presentation will answer the question and explain how this approach reduces storage excesses, frees up DBAs from
routine work thus allowing them to concentrate on innovation, and accelerates development and company productivity

Kyle Hailey is a principal designer for the Oracle Enterprise Manager performance pages. He is a member of the
Oracle Oak Table, co-author of Oracle Insights: Tales of the Oak Table, and was a technical editor of Oracle Wait
Interface. He holds a patent in the area of database performance diagnosis, and has been a speaker at Hotsos,
NOCOUG,RMOUG, NYCOUG, Oracle World and organizes Oaktable World. Currently, Kyle works as a
Performance Architect at Delphix along with industry leading software, kernel and filesystem designers to take
corporate data management to a new level of agility.

10:45-11:45 AM DEVELOPER TRACK: Drinking the Kool-Aid
 My Journey to Becoming an ADF Believer

This presentation covers the ADF framework and how it may benefit an organization and/or developer willing to work
with and take advantage of all it has to offer. Topics covered include ADF strengths and weaknesses from a Java
perspective including an explanation of the speaker’s background and how he approached working with ADF. This
presentation is ideal for those considering ADF as an architecture.

Rob Nocera is a cofounder of NEOS LLC, a management consulting and technologies services firm, where he is
currently CTO and partner. As CTO of NEOS, Rob leads the technology drive for the company and is the visionary
behind the NEOS product set including Vgo software’s, a sister company of NEOS, products (EVO and ART) and the
Equilibrium framework. Rob has worked with clients around the world in modernizing enterprise applications specializing
in internet and intranet applications.

www.nyoug.org 212.978.8890 7

1:30-2:30 PM DBA TRACK: Why You Should Run Oracle on SPARC Solaris

Oracle's acquisition of Sun Microsystems, long known for its excellent engineering, placed it in a unique position. It is
now able to integrate and coordinate both hardware and software development to ensure that SPARC and Solaris provide
unique features to ensure that they remain the very best platform for the flagship Oracle Database. This presentation will
discuss how "software in silicon" and advanced operating-system technology can provide superb reliability, flexibility,
and performance for Oracle11g and 12c.

Paul Baumgartel has been an Oracle developer and DBA for over 25 years. In 2013, he happily took the opportunity to
join the “mother ship” as a Principal Sales Consultant at Oracle, providing pre-sales architectural and technical support to
customers and prospects.

1:30-2:30 PM DEVELOPER TRACK: Expanding the SQL Horizons:
 PL/SQL User-Defined Functions in the Real World

This presentation illustrates why it often makes sense to step out of purely SQL-based implementation and start writing
PL/SQL code to augment it. The presentation also includes in-depth analysis of the most critical part of working with
user-defined functions in a SQL environment, namely, managing the frequency and cost of calls. Special features, such as
the DETERMINISTIC clause, scalar sub-query caching, PRAGMA UDF clause, and the result cache will be introduced to
serve as potential solutions. Examples from the upcoming Oracle PL/SQL Performance Tuning Tips & Techniques
(Oracle Press, 2014) will be used to illustrate all of the concepts.

Michael Rosenblum is a Software Architect/Development DBA at Dulcian, Inc. where he is responsible for system
tuning and application architecture. Michael supports Dulcian developers by writing complex PL/SQL routines and
researching new features. He is the co-author of PL/SQL for Dummies (Wiley Press, 2006), contributing author of Expert
PL/SQL Practices (APress, 2011), and author of a number of database-related articles (IOUG Select Journal, ODTUG
Tech Journal) and conference papers. Michael is an Oracle ACE, a frequent presenter at various Oracle user group
conferences (Oracle OpenWorld, ODTUG, IOUG Collaborate, RMOUG, NYOUG, etc), and winner of the ODTUG
Kaleidoscope 2009 Best Speaker Award. In his native Ukraine, he received the scholarship of the president of Ukraine, a
Master of Science degree in Information Systems, and a diploma with honors from the Kiev National University of
Economics.

2:45-3:45 PM DBA TRACK: Building Oracle on Flash Arrays

This presentation will provide practical information about building Oracle on Linux using flash storage arrays to achieve
200-microsecond latency and up to 1.2 million IOPS. The presentation covers ASM and database design features needed
to maximize flash storage effectiveness. Attendees will learn the basics of designing and building single-instance and
RAC databases on flash storage. Basic design features necessary for flash at both the ASM and database levels are also
covered. Recommendations for specific flavors of Linux including OEL, RHEL, and CentOS are discussed, as well as the
differences between Linux 5 and 6.

Gilbert Standen is the East Coast Region Engineer, Oracle practice, for Violin Memory, the market-leading
manufacturer and designer of all-nand-flash storage arrays. Gil has worked on numerous low-latency Oracle projects in
the NYC area, including building the T-bill day trading Oracle back end RAC for the Currenex FX Trading Division of
State Street Bank, as well as projects for gas and oil market makers, fixed-income securities, and other financial industry
projects.

www.nyoug.org 212.978.8890 8

2:45-3:45 PM DEVELOPER TRACK: Simplify Enterprise Mobility:
 An Overview of Oracle’s Mobile Strategy

Two new Fusion Middleware Products embody our strategy: Oracle Mobile Suite bundles ADF Mobile with Oracle
Service Bus and Oracle Integration Adapters. This approach enables you to build mobile back-ends from your existing
assets more productively. The Oracle Mobile Security Suite extends existing enterprise identity services into the mobile
space, and makes it possible to manage corporate applications and data while keeping them separate, even on personal
devices. In the near future, the Oracle Mobile Cloud Service will make application development more productive, and will
simplify deployment. This presentation discusses current mobile market trends and Oracle's mobile strategy. It also
describes the Oracle Mobile Suite and Oracle Security Suite, two new innovate offerings in the Fusion Middleware
family. Finally, attendees will be given a sneak peek at the Oracle Mobile Cloud Service.

Frédéric Desbiens is a product manager in the Oracle Application Development Tools group. He has sixteen years of
experience in the IT industry, and worked for several years as a consultant, with many opportunities to get real-world
expertise on several projects involving various Oracle technologies, such as Oracle SOA Suite and Oracle WebCenter. He
co-authored the WebCenter 11g Handbook: Build Rich, Customizable Enterprise 2.0 Applications (McGraw-Hill).

4:00-5:00PM DBA TRACK: The Oracle Database Backup Logging Recovery Appliance:
 Revolutionize Oracle Data Protection

Despite years of technology advancements, Database Backup and Recovery continues to be one of the most nagging IT
administration problems. On one hand, backup windows keep getting smaller. On the other hand, database sizes keep
growing. There have been numerous product announcements in the industry leading to claims of storage savings (e.g.
deduplication), database-level integration, and better performance. However, none of these work in a reliable manner in
busy database environments, often leading to islands of fragmented backup processes. This presentation introduces a
revolutionary way to perform Oracle Database Backup and Recovery, with an upcoming Engineered System from Oracle:
the Database Backup Logging Recovery Appliance.

Timothy Chien is a Principal Product Manager with Oracle. He is recognized by the Oracle user community as a
technical expert and evangelist for Oracle Backup and Recovery Technologies. He is a regular presenter at Oracle User
Group meetings, frequently conducts hands-on technical training, and provides expert technical advice to customers
worldwide.

4:00-5:00PM DEVELOPER TRACK: Setting Up OBIEE on a Snowflake-Heavy Data Warehouse

OBIEE is designed for classic Kimball star data models, as are the associated Discoverer migration tools. The NYC HRA
recently migrated one of the country’s largest existing social services data warehouses to OBIEE from Discoverer. This
presentation discusses successful methods for migrating to OBIEE on an existing snowflake-heavy data warehouse,
without making major data model changes. In addition, the presentation explains how alternate logical table sources and
logical dimension hierarchies in OBIEE allowed the team to maintain existing flexibility for ad hoc query users and add
new custom features such as default filters.

Rebecca Widom has been working on Oracle since 2008 with the NYC HRA Data Warehouse. New York City houses
one of the largest social services data warehouses in the country, with 10+ years of descriptive history on our millions of
clients and their families. In the last year, she led RPD development for a migration from Discoverer to OBIEE.

www.nyoug.org 212.978.8890 9

Message from the President’s Desk
Michael Olin

Spring, 2014

Owning Up to My Technical Prejudices
There is really no other way to describe it. I’m a database bigot. The other day, I was asked to look at a query that was
causing poor performance in a vendor product that my client is about use to go live. I was warned that, “It has a bunch of
‘COALESCE’s in it. Do you think you might be able to suggest a way to improve the performance?” My immediate
response was: “How about not trying to run SQL Server queries against an Oracle database?” Of course Oracle supports
the COALESCE function, but why would you ever want to use it? Oracle’s documentation scoffs:

This function is a generalization of the NVL function.
You can also use COALESCE as a variety of the CASE expression.

Later that day, I was sent another query with a construct that offended my Oracle-centric sensibilities: DATEADD(‘DD’,
-100, SYSDATE). Oracle doesn’t even have a DATEADD function! A little digging revealed that DATEADD was a
stored function that had been created in the main schema for the application. Instead of using a simple “SYSDATE –
100”, which would be executed entirely within the SQL engine, this application has “DATEADD”s in SQL statements
sprinkled liberally throughout the code, with each execution requiring a context switch to PL/SQL just to do some simple
date arithmetic using T-SQL syntax. While I’m on a roll, don’t even get me started about ANSI-SQL join syntax. To my
eye, ANSI SQL joins are almost impossible to decipher. Oracle’s join syntax is much easier to read. All of the tables
accessed in a query are grouped together (in the FROM clause, where they belong) as are the join conditions (in the
WHERE clause). Oracle’s outer join syntax “(+)” is also more elegant than the clumsy “LEFT OUTER JOIN” or “RIGHT
OUTER JOIN.” The only concession I’m willing to make to the ANSI syntax is for FULL OUTER JOINs. Whenever I
use them, I make sure that all of my other joins and WHERE conditions are encapsulated in either factored sub queries or
inline views. My FULL OUTER JOINs are crisp and clean, without any other ANSI nastiness cluttering up the query.

I see situations like this all of the time. Products that are originally developed on non-Oracle platforms, usually SQL
Server, are ported to run on Oracle without any consideration of how the Oracle RDBMS is fundamentally different from
SQL Server. This invariably leads to poor performance of the product when installed with an Oracle back-end and often
includes the introduction of security vulnerabilities because of an assumption that the application is the only thing running
in the database (typical for SQL Server where the concept of a “database” is analogous to a schema in Oracle, and not a
database instance). Would an Oracle developer ever try to build a system where an application schema required the
“DROP ANY TABLE” system privilege? I understand that maintaining multiple code bases for different platforms is a
challenge, but somehow Oracle has been able to do that with its core RDBMS for decades. Back in the 1980s, I doubt that
Oracle was writing a library for the IBM PC to emulate VAX/VMS system calls so that they only needed to maintain one
version of the database kernel source code. If you want to sell a product to run against an Oracle database, wouldn’t it
make sense to ensure that your code took advantage of the things that Oracle does best?

Different Ways of Viewing the World
There is much more at stake here than the readability and efficiency of varying syntax of SQL statements. Far too much of
the database code that I see today reflects a fundamental misunderstanding of the strengths of the underlying database
platform and how to best use them to the developer’s advantage.

When Oracle was a relatively new product, it did not support a built-in procedural programming language. Programs were
developed as either scripts of SQL statements (and we were very creative in writing SQL that generated more SQL which

www.nyoug.org 212.978.8890 10

was written to a file that was executed later on in the script), or as programs written in a conventional 3GL, such as
Fortran, COBOL or C, with SQL statements that were converted to library calls in the native language by a pre-compiler
and then compiled into executable code. Programmers had to get as much done in SQL as possible, since walking
iteratively through records in the database was impossible in a SQL script and time consuming and expensive in a 3GL.
For years, I explained to new Oracle users that they needed to stop thinking like COBOL or Fortran programmers. SQL
was a much too powerful tool to waste on retrieving one record from the database at a time, examining the data field-by -
field, or performing calculations in local variables and then writing the results back to the database. Instead, they needed
to envision their database programs as performing operations on Venn diagrams. Figure out how to define the set of data
that you needed to manipulate and, with a single SQL statement, perform your calculations and update the data. Of course,
this approach would not work for everything. Until Oracle developed PL/SQL, clunky, precompiled 3GL code was one of
the only alternatives. The original versions of PL/SQL helped solve many of those problems, but as PL/SQL has matured
into a full featured development platform with stored procedures, file system and network access, support for objects and
more, I see more and more code that reverts to the pre-1980, row-by-row, iterative view of the world. PL/SQL programs
are much more efficient and infinitely more powerful now than the old precompiled 3GL code could ever hope to be.
However, Moore’s Law has allowed us to hide programming practices that are inherently inefficient.

This move away from efficient SQL queries (which is what a database platform like Oracle does best) towards procedural,
iterative code is being encouraged not only by programming languages such as T-SQL (which makes it a bit too easy to
extract data into temporary datasets to be iterated through), but also by the entire object-oriented paradigm, which treats
the database as nothing more than a persistent datastore used to store and retrieve data, but one which cannot perform
complex manipulations. At NYOUG, for years, we have had expert speakers urging us to let the database do the heavy
lifting, but the message is lost on those who never had to go through the code / precompile/compile/execute cycle in order
to simply iterate through a set of records. However, there is hope as big data makes it impossible to iterate because of the
sheer volume of data to be processed. The map-reduce model is actually forcing developers to think about sets of data
again instead of looking at individual records.

Trying to Keep an Open Mind
As a student, I worked with all sorts of fledgling languages for accessing relational databases. I still have textbooks and
manuals that contain the syntax for Quel, Square, QBE (Query-by-Example) and what was originally called SEQUEL. I
have written code in COBOL and Fortran to access flat-file databases. I even developed a small prototype of an RDBMS
that was constructed entirely in LISP. I did not start out hating them all. Working with Oracle’s SQL implementation
changed the way that I looked at data, and to be honest, I tend to see sets of data where others see row after row. Now, I’m
stuck. Iterating through data when it isn’t necessary really bothers me. Programming paradigms which encourage that
view get me agitated. Bringing thousands of rows up to the middle tier, just to examine and discard almost all of them
makes me crazy. Just seeing the syntax associated with any of these things is enough to make me dismissive. I know that
not everyone sees things the same way that I do. I’m trying to keep an open mind, but decades of database bigotry make it
something that I continue to struggle with. I have to assume that someday I’ll encounter a new paradigm that changes my
view of the world. However, for now, if I’m going to be working with a database, it’s Oracle and SQL above all others.

Michael Olin
President, NYOUG

www.nyoug.org 212.978.8890 11

Editor’s Corner
Melanie Caffrey

And the Award Goes To …
The Editor’s Choice Award for 2014 (for papers written and/or presented in 2013/2014) is awarded to Michael
Rosenblum, author of the paper, Expanding the SQL Horizons: PL/SQL User-Defined Functions in the Real World,
published in the current issue of the NYOUG Tech Journal. Michael presented this topic at the March 2014 NYOUG User
Group meeting. A long-time developer, architect and DBA for Dulcian, Inc., Michael is a consummate database
professional, winner of the ODTUG Kaleidoscope 2009 Best Speaker Award, prolific author (co-author of PL/SQL for
Dummies (Wiley Press, 2006) (alongside NYOUG’s president emeritus, Dr. Paul Dorsey), contributing author of Expert
PL/SQL Practices (APress, 2011) (alongside yours truly), and author of many articles for publications like the IOUG
Select Journal, the ODTUG Tech Journal, and, obviously, the NYOUG Tech Journal), and a tireless mentor.
Michael is an Oracle ACE, and a frequent presenter at various Oracle user group conferences (Oracle OpenWorld,
ODTUG, IOUG Collaborate, RMOUG, NYOUG, etc). Michael consistently delivers well-researched and engaging papers
and presentations, and is a marvelous educator. His attention to detail and clear expository style help to make each one of
his articles an informative read and his presentations an enjoyable educational experience. It is a pleasure to have Michael
Rosenblum associated with the NYOUG.
Candidates for the 2015 award appear beginning with this issue. Many of the papers included in the Tech Journal are
based on presentations given at NYOUG general meetings, but presentation is not a requirement to have a paper or article
published in the newsletter. Please send your paper to: editor@nyoug.org, by April 30, to appear in the June issue. Due
dates for later issues are: July 1 (September) and October 1 (December).

Newsletter Close and Publication Dates – 2014

Meeting Date Location Newsletter

Publication Date
Article

Submission
Deadline

Ad Closing Date

June 2014 Borough of Manhattan
Community College (BMCC)

June 1 April 30 May 1

Your Ad Here!

Vendors, place your advertisement in the NYOUG Tech Journal. Let our
members know you want to do business with them.

Ad Options Available: Full Page – Black/White or Color

Half-Page – B/W only

Sponsorships: General Meeting – Primary and Secondary
Special Interest Group

Journal Ad only
Most sponsorship packages include color and/or black/white ads.

www.nyoug.org 212.978.8890 12

RMAN 12c - Recover Table
Timothy Vaughn, Markit N.A.

Many years ago, when I got my first job as a junior database administrator, one of the first tasks I had to sit in on was
recovering one table in an Oracle 8i database. The developers had accidently dropped the ‘jobs’ table in production and
needed it to be restored. The senior database administrator I worked alongside was not very happy about this and was
cursing words better left out of this article. We created a temporary instance, restored and recovered the essential
tablespaces and exported/imported the restored table back into the production database. Needless to say with only a few
days experience as a database administrator, I was completely confused about how and what we had just done.
A few years later I moved to the big smoke (Sydney) and started a new job. On my very first day a developer asked me
how long it would take to recover just one table in production. “A longtime” I replied as he explained how important it
was. So off I went to do the recovery.
When Oracle 12c came out and I heard about RMAN’s new feature to recover tables, I was very interested to check it out
as well as getting familiar with multitenant databases. Reading from the concepts guide, RMAN is going to perform the
following tasks when recovering a table or table partitions;
RMAN locates the backups that are needed.

1. Creates an auxiliary database using the backup files to recover the table .
2. Creates a data pump export file which contains the recovered table or partition.
3. Imports the table or partition via data pump into the target database (optional).
4. Renames the table or partition in the target database (optional).
5. Cleans up the auxiliary database.

Looks pretty familiar? Let’s take a closer look.

What Are the Prerequisites?
The database must be in archivelog mode and the database must be open read write. If we wish to recover a single table
partition we have to set the COMPATIBLE parameter to 11.1.0 or higher. Of course we must have a valid RMAN
backup.

What Are the Limitations?
We can't recover tables or partitions that are owned by SYS, or that are in the SYSTEM or SYSAUX tablespace. Tables
or partitions on standby databases also cannot be recovered.
One other interesting limitation is tables with ‘named’ NOT NULL constraints cannot use the REMAP option for
recovery.

What Do We Need to Prepare for Running the Recovery?
The name of the table or table partitions we wish to recover. We must also provide the SCN, log sequence or point in time
that we wish to recover the tables to.

A Simple Example
I have a very small table in my target database. I will take a full backup of the database using RMAN. After the backup is
complete I will purge the table from the database.

www.nyoug.org 212.978.8890 13

Now from my RMAN session I can see the table no longer exists.

Let’s start the recovery. I am recovering a table in a standard (non-multitenant) database. First let me describe a few of the
options in the command.

AUXILIARY DESTINATION - This is where the auxiliary database files are going to be restored to. This can be an
ASM disk group or operating system file system.

DATAPUMP DESTINATION - This is the location where RMAN will create a data pump directory and use it to export
the table to.

DUMP FILE - The name of the data pump dump file.

Below is the command to start the table recovery

I have pulled out some parts of the RMAN output to describe the process. First we can see RMAN is creating an
automatic instance with a sid 'fCez' and SGA_TARGET of 1G. The SID always seems to be a random 4 character string.
Notice that the db_name is set to the target database name and the db_unique_name is set to 'fCez_pitr_STANDARD'.

-- my table
RMAN> select * from tim.recover_tab;

 ID TIME DESCR
---------- --------- --------------------
 1 04-DEC-13 original row

-- backup the database
RMAN> backup database plus archivelog;

-- Drop (purge) the table.
SQL> drop table TIM.RECOVER_TAB purge;

Table dropped.

RMAN> select * from tim.recover_tab;

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of sql statement command at 12/04/2013 03:18:22
ORA-00942: table or view does not exist

RMAN> recover table "TIM"."RECOVER_TAB"
 until scn 1737059
 auxiliary destination '+DATA'
 datapump destination '/u01/recover/dmp'
 dump file 'revocer_tab.dat';

www.nyoug.org 212.978.8890 14

RMAN now starts to restore the the controlfile and then the system, sysaux, and undo tablespaces. Interestingly we can
see that the restore has placed the files in the same ASM disk group directory as the target database
(+DATA/STANDARD12C).

Media recovery (until scn) is then applied to these restored tablespaces, and the database is shutdown and restarted. Now
RMAN starts restoring the tablespaces which contain the tables that we specified to recover. This time the restored
datafile is placed in a different ASM directory (+DATA/FCEZ_PITR_STANDARD12C).

Creating automatic instance, with SID='fCez'

initialization parameters used for automatic instance:
db_name=STANDARD
db_unique_name=fCez_pitr_STANDARD
compatible=12.1.0.0.0
db_block_size=8192
db_files=200
sga_target=1G
processes=80
diagnostic_dest=/u01/app/oracle
db_create_file_dest=+DATA
log_archive_dest_1='location=+DATA'
#No auxiliary parameter file used

set requested point in time
set until scn 1737059;
restore the controlfile
restore clone controlfile;
mount the controlfile
sql clone 'alter database mount clone database';
archive current online log
sql 'alter system archive log current';
}

channel ORA_AUX_DISK_1: restore complete, elapsed time: 00:00:03
output file name=+DATA/STANDARD12C/CONTROLFILE/current.285.833253571

set requested point in time
set until scn 1737059;
set destinations for recovery set and auxiliary set datafiles
set newname for clone datafile 1 to new;
set newname for clone datafile 4 to new;
set newname for clone datafile 3 to new;
set newname for clone tempfile 1 to new;
switch all tempfiles
switch clone tempfile all;
restore the tablespaces in the recovery set and the auxiliary set
restore clone datafile 1, 4, 3;
switch clone datafile all;

datafile 1 switched to datafile copy
input datafile copy RECID=4 STAMP=833253726 file
name=+DATA/STANDARD12C/DATAFILE/system.286.833253581
datafile 4 switched to datafile copy
input datafile copy RECID=5 STAMP=833253726 file
name=+DATA/STANDARD12C/DATAFILE/undotbs1.288.833253581
datafile 3 switched to datafile copy
input datafile copy RECID=6 STAMP=833253726 file
name=+DATA/STANDARD12C/DATAFILE/sysaux.287.833253581

www.nyoug.org 212.978.8890 15

Media recovery is once again initiated, and the auxiliary database restore and recovery is complete.
Next RMAN creates the data pump directories and completes the export and import.

Finally RMAN kindly cleans up after itself.

{
set requested point in time
set until scn 1737059;
set destinations for recovery set and auxiliary set datafiles
set newname for datafile 6 to new;
restore the tablespaces in the recovery set and the auxiliary set
restore clone datafile 6;
switch clone datafile all;
}

. . .

datafile 6 switched to datafile copy
input datafile copy RECID=8 STAMP=833253778 file
name=+DATA/FCEZ_PITR_STANDARD/DATAFILE/users.290.833253775

contents of Memory Script:
{
create directory for datapump import
sql "create or replace directory TSPITR_DIROBJ_DPDIR as ''
/u01/recover/dmp''";
create directory for datapump export
sql clone "create or replace directory TSPITR_DIROBJ_DPDIR as ''
/u01/recover/dmp''";
}

Performing export of tables...
 EXPDP> Starting "SYS"."TSPITR_EXP_fCez_mnev":
 EXPDP> Estimate in progress using BLOCKS method...
 EXPDP> Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
 EXPDP> Total estimation using BLOCKS method: 64 KB
 EXPDP> Processing object type TABLE_EXPORT/TABLE/TABLE
 EXPDP> Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
 EXPDP> Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
 EXPDP> . . exported "TIM"."RECOVER_TAB" 5.898 KB 1 rows
 EXPDP> Master table "SYS"."TSPITR_EXP_fCez_mnev" successfully loaded/unloaded
 EXPDP> **
 EXPDP> Dump file set for SYS.TSPITR_EXP_fCez_mnev is:
 EXPDP> /u01/recover/dmp/revocer_tab.dat
 EXPDP> Job "SYS"."TSPITR_EXP_fCez_mnev" successfully completed at Wed Dec 4 03:24:02 2013
elapsed 0 00:00:39
Export completed

Performing import of tables...
 IMPDP> Master table "SYS"."TSPITR_IMP_fCez_smul" successfully loaded/unloaded
 IMPDP> Starting "SYS"."TSPITR_IMP_fCez_smul":
 IMPDP> Processing object type TABLE_EXPORT/TABLE/TABLE
 IMPDP> Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
 IMPDP> . . imported "TIM"."RECOVER_TAB" 5.898 KB 1 rows
 IMPDP> Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
 IMPDP> Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
 IMPDP> Job "SYS"."TSPITR_IMP_fCez_smul" successfully completed at Wed Dec 4 03:24:24 2013
elapsed 0 00:00:06
Import completed

www.nyoug.org 212.978.8890 16

Things of Interest
The recover feature will create an auxiliary database to export the specified table from, including the system, sysaux, and
undo tablesapce as well as the data files that contain the table to be restored. If those files are large, you will need to factor
in the disk space for those restored files.
When specifying an ASM disk group for the auxiliary destination if you choose the same disk group that holds the target
database files (eg. +DATA) RMAN places the restored system, sysaux and undo data files in the same location as the data
files from the target database.
When restoring a partitioned table RMAN will recover each partition into a new table. For example if I restore two
partitions of a partitioned table, using the following command;

Once the import stage happens, RMAN will import two new tables for each partition into the target database.

If we were to recover a table that already exist in the target database RMAN will kindly rename the imported tables for
you. Below I have re run the exact same recover table command as above after the first recover completed, notice that
now when the import happens the tables are renamed.

Removing automatic instance
Automatic instance removed
auxiliary instance file +DATA/STANDARD12C/TEMPFILE/temp.289.833253731 deleted
auxiliary instance file +DATA/FCEZ_PITR_STANDARD/ONLINELOG/group_3.293.833253781 deleted
auxiliary instance file +DATA/FCEZ_PITR_STANDARD/ONLINELOG/group_2.292.833253781 deleted
auxiliary instance file +DATA/FCEZ_PITR_STANDARD/ONLINELOG/group_1.291.833253781 deleted
auxiliary instance file +DATA/FCEZ_PITR_STANDARD/DATAFILE/users.290.833253775 deleted
auxiliary instance file +DATA/STANDARD12C/DATAFILE/sysaux.287.833253581 deleted
auxiliary instance file +DATA/STANDARD12C/DATAFILE/undotbs1.288.833253581 deleted
auxiliary instance file +DATA/STANDARD12C/DATAFILE/system.286.833253581 deleted
auxiliary instance file +DATA/STANDARD12C/CONTROLFILE/current.285.833253571 deleted
auxiliary instance file revocer_tab.dat deleted
Finished recover at 04-DEC-13

RMAN> select * from tim.recover_tab;

 ID TIME DESCR
---------- --------- --------------------
 1 04-DEC-13 original row

--Partitioned table recover
recover table "TIM"."DETAILS_BY_STATE":"NSW", "TIM"."DETAILS_BY_STATE":"WA"
until scn 1751307
 auxiliary destination '+FRA'
 datapump destination '/u01/recover/dmp'
 dump file 'details_by_state.dat';

Performing import of tables...
 IMPDP> Master table "SYS"."TSPITR_IMP_nEyi_Dpyv" successfully loaded/unloaded
 IMPDP> Starting "SYS"."TSPITR_IMP_nEyi_Dpyv":
 IMPDP> Processing object type TABLE_EXPORT/TABLE/TABLE
 IMPDP> Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
 IMPDP> . . imported "TIM"."DETAILS_BY_ST_NSW" 6.320 KB 1 rows
 IMPDP> . . imported "TIM"."DETAILS_BY_ST_WA" 6.320 KB 1 rows
 IMPDP> Job "SYS"."TSPITR_IMP_nEyi_Dpyv" successfully completed at Sat Mar 1 21:28:35 2014
elapsed 0 00:00:12
Import completed

www.nyoug.org 212.978.8890 17

The other option is to use the REMAP TABLE or REMAP TABLESPACE to rename the tables during the recovery. We
can also use the NOTABLEIMPORT option to instruct RMAN not to import the table into the target database, and just
leave you with the export dump file.
We can tailor the auxiliary instance to specify a limited set of parameters which can be helpful when troubleshooting
RMAN auxiliary instance issues.

I was then interested to see the recover table feature work in a pluggable database. Unfortunately there is a bug which
prevents the auxiliary pluggable database from starting (bug 18266002).

Summary
This new feature of RMAN 12c simplifies the process of recovering individual tables from a backup. If you are ever in the
situation where you can’t use flashback technologies to restore a table to a specific point in time, or you need the table as
it was a long time ago in the past, this feature is very handy.

About the Author
Timothy Vaughan is from Newcastle Australia and is currently working as a database administrator for Markit N.A. in the
financial services evironment. He has worked in Australia, South East Asia and North America. Timothy has presented at
the New South Wales and Victorian Oracle User Groups in Australia on the topic of ASM when it was first introduced in
10g. He currently resides in New York City.

Performing import of tables...
 IMPDP> Master table "SYS"."TSPITR_IMP_nibh_xftc" successfully loaded/unloaded
 IMPDP> Starting "SYS"."TSPITR_IMP_nibh_xftc":
 IMPDP> Processing object type TABLE_EXPORT/TABLE/TABLE
 IMPDP> Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
 IMPDP> . . imported "TIM"."DETAILS_BY_ST_NSW_1" 6.320 KB 1 rows
 IMPDP> . . imported "TIM"."DETAILS_BY_ST_WA_1" 6.320 KB 1 rows
 IMPDP> Job "SYS"."TSPITR_IMP_nibh_xftc" successfully completed at Sat Mar 1 21:45:46 2014
elapsed 0 00:00:04
Import completed

RMAN> set auxiliary instance parameter file to ‘/tmp/initaux.ora’;

www.nyoug.org 212.978.8890 18

Big Data and Mobile: What They Mean for PL/SQL
Developers

Frédéric Desbiens, Principal Product Manager – Mobility and Development
Tools, Oracle

If you read this article, you probably are an experienced IT professional who works on a daily basis with mature, well-
established tools. PL/SQL and Oracle Forms have been around for quite some time and, yet, are still relevant for a huge
proportion of Oracle’s customers. Through innovative products like Oracle Application Express (APEX), PL/SQL even
plays an even bigger role than ever in most Oracle-centric shops. XML? RESTFul web services? Adaptative web layouts?
Mobile-optimized web sites? PL/SQL got you covered. Not bad for a language introduced 22 years ago as an optional
extension to Oracle Database version 6... Yet, the technology landscape changed a lot since then. More often than not, the
challenges of today’s applications cannot be solved with a single tools or just one programming language. Two current
trends contribute to that situation: Big Data and Mobile.
Let me state this upfront: you do not have to leave your current toolset and skills behind. PL/SQL is here today, and it is
here to stay. On the other hand, Big Data and Mobile are two huge, disruptive opportunities. If you want to take advantage
of them, you will need to learn new technologies. But which one? The mobile space is dominated by two object-oriented
yet incompatible platforms: iOS and Android. On the other hand, the market for Big Data solutions is fragmented, which
makes it difficult for newcomers to plan their learning path. Wouldn’t it be nice to use a cross-platform programming
language suitable to both mobile and Big Data development? Fortunately, such a language exists. Not only that, but it is
nearly as old as PL/SQL itself and is the second most widely used in the worldi! Meet... Java.
How can Java be such a good fit for Mobile and Big Data applications? My aim is to answer this very question.

Big Data: You Need Java to Play
How do you build the index for a search engine such as Google? How do you transform a few terabytes of scanned
archives in PDF files? How do you sort a massive data set of 102.5 terabytes at a rate of 1.42 terabytes per minuteii? In all
three cases, the answer is the same: Big Data technologies.
Big Data can be defined as high-volume, high-velocity and high-variety information assetsiii. In a technology perspective,
while there are dozens of Big Data solutions in the marketplace, nearly all of them incorporate Apache Hadoop, an open-
source framework that provides a reliable shared storage and analysis systemiv. The premise behind the platform is that
queries will scan the whole dataset - or at least a good portion of itv. It is better suited to applications where data is written
once and read many times; in addition, it is inherently a batch processing environment. Big Data solutions are nearly
always deployed on sizable clusters. Thus, reasonable response times are achieved through parallel processing and
collocation of the data with the compute nodes.
The two main components of Hadoop are MapReduce and HDFS (although there are several alternatives to HDFS
available). MapReduce is a distributed programming model and execution environment for processing large data sets on a
cluster. A MapReduce program is composed of a Map() method to filter and sort data and a Reduce() method which
computes a summary. Hadoop ensures the MapReduce jobs are run in parallel and provides redudancy and fault tolerance.
HDFS, on the other hand, is a distributed and portable filesystem; it can store huge files across multiple servers, and
satisfies reliability requirements through data replication. Such a filesystem ensures that the necessary data is located on
the server where a specific job is scheduled to run.
Oracle’s take on Big Data is quite simple. We see technologies such as Hadoop as a complement to relational databases,
and many agree with usvi. This is why our tools enable you to query a Hadoop cluster from an Oracle Database instance,
and to import Hadoop data inside Oracle. In addition, we offer complementary products to leverage the imported data;
some of them even offer a PL/SQL API. Moreover, Big Data is an integral part of our engineered systems strategy.
Oracle’s Big Data Appliance offers a cost effective, fully integrated and preconfigured solution which relies on Hadoop
and Oracle’s own NoSQL database.

www.nyoug.org 212.978.8890 19

Java plays an essential role in most Big Data initiatives, both as infrastructure and as a programming language. Hadoop
and HDFS have been coded in Java, as a large proportion of the complementary tools available on the market. In addition,
MapReduce jobs must be written in Java. Moreover, a good knowledge of the JVM’s inner workings is necessary to tune
the cluster properly - although you can mitigate that by choosing the Oracle Big Data Appliance over commodity
hardware. Consequently, if you see Big Data in your future, learning Java is an essential first step.

Mobile: A Tale of Two Platforms
A few years ago, I only owned an old basic cell phone; no camera, no wifi and a few applications I never started. At the
time, the initial iPad seemed to me a costly solution in search of a problem. How the world changed since! Nowadays,
both my wife and I have use smartphones; even my ten-year-old daughter uses an old one as a music player and portable
web browser. I use a tablet every day to read books and browse my emails. My experience probably reflects yours.
Mobile technologies are now more than a trend; they are part of our lives and influence society as well. The question is
not if your organization will have to consider them in its IT architecture, but when. Maybe you work for one of the early
adopters; maybe your employer is still trying to chart the course. In the latter case, you probably did not wait for your
hierarchy to decide and brought your own device at work. This raises fundamental questions for IT specialists. How to
keep corporate data safe and separate from personal data? How to deploy licensed applications to personal devices? More
fundamentally: which mobile platform to target?
The market already answered the last question. Together, Google’s Android and Apple’s iOS are deployed on more than
95% of current devicesvii. There is still the possibility of a surge in Microsoft’s Windows Phone usage; Blackberry’s
future, on the other hand, is grim. The two dominant mobile operating systems exhibit a feature set that is remarkably
similar. The actual implementations are very different, notwithstanding. The diagram below shows the various subsystems
of both operating systems.

As you can see, iOS and Android are built on incompatible stacks; sharing code between the two is possible, but very
cumbersomeviii. Obviously, mobile web applications don’t suffer from that issue. But what if you need to provide deep
integration with the device’s features, such as the camera, the contacts list or the GPS? How will the users react if they
cannot use your application when a network connection is not available? Native on-device applications currently play a
central role in mobile technology; in October 2013, Apple announced that the number of cumulative downloads for the
applications available in its store had broken the 60 billions markix. So the real question is: how can you build native on-
device applications targeting iOS and Android in a productive fashion? And the answer is, once again, Java.
Oracle ADF Mobile enables you to build native applications that can be deployed on the two dominant mobile operating
systems without changing anything in the code. You can leverage the extensive ADF Mobile XML View (AMX)
collection of components to build the user interface, or work directly using HTML 5 and JavaScript. The following
diagram represent the architecture of the framework.

www.nyoug.org 212.978.8890 20

ADF Mobile applications are cross-platform since all back-end code is written in pure Java. Apple and Google prohibit
the deployment of dependencies and shared libraries on their mobile operating systems. Consequently, ADF Mobile
applications are self-contained; the required JVM is packaged alongside your code at deployment time.
The focus of ADF Mobile is developer productivity. Most Java web developers will be able to pick it up quickly, since it
incorporates many of the concepts found in Java Server Faces (JSF), such as expression language and user interface
components. Moreover, the many declarative features of the framework mean that you can build a fully featured
application without having to write much code. The key enabler here is the JDeveloper IDE, which provides easy to use
editors to perform declarative tasks and emphasizes drag-and-drop over manual coding to build the user interface. The
overall simplicity of the ADF Mobile framework thus sharply reduces its learning curve. Granted, a typical PL/SQL
developer will still have to learn Java in order to use it. On the other hand, building pages with the AMX components
makes for a developer experience very close to Oracle Forms, since the developer doesn’t have to worry about HTML 5
and JavaScript but rather simply chooses the right components to implement the desired layout.
ADF Mobile is Oracle’s strategic toolkit to build applications that run directly on iOS and Android devices. Its embedded
database, based on SQLitex, makes it possible to add offline support to any application. This unique capability sets ADF
Mobile apart from all the other mobile-enabled tools that we offer, such as APEX and ADF. If you want to ride the mobile
wave, you will need to build such applications. Thus, you will need to add Java to your arsenal.

Conclusion
Java will not replace or displace PL/SQL, but will rather complement it when and where it makes sense. In a way, this is
exactly the situation we have with APEX and ADF: two great tools, each best suited to a different set of use cases. If you
are a developer or architect and wish to take advantage of big data or mobile opportunities in the Oracle ecosystem, Java
should be at the top of your list of new skills to acquire.

1 With a 16.4% rating in the Tiobe Index, March 2014. See http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html for the
most current ratings.
1 At the time of writing, this was the world record for the Sort Benchmark in the Hadoop category. See
http://sortbenchmark.org/Yahoo2013Sort.pdf for more information about how this record has been achieved.
1 This is the definition given by Gartner in its online IT Glossary. http://www.gartner.com/it-glossary/big-data/
1 Tom White, Hadoop: The Definitive Guide. 3rd Edition. O'Reilly Media / Yahoo Press, 2012, chapter 1.
1 Id.
1 The following article is a typical example: Jack Clark, “Google goes back to the future with SQL F1 database”, The Register, August
30 2013. http://www.theregister.co.uk/2013/08/30/google_f1_deepdive/ Retrieved on March 4 2014.

www.nyoug.org 212.978.8890 21

1 Source: Strategy Analytics, reported by PR Newswire. http://www.prnewswire.com/news-releases/strategy-analytics-android-
captures-79-percent-share-of-global-smartphone-shipments-in-2013-242563381.html
1 Typically, this involves writing cross-platform C code for the back-end; sharing UI code and layouts is not possible due to the
technical differences between the two platforms.
1 Marc Perton, “Apple App Store hits 60 billion cumulative downloads”, Engaget, October 22 2013.
http://www.engadget.com/2013/10/22/apple-ios-7-downloaded-over-200-million-times-in-5-days/ Retrieved on March 4 2014.
1 SQLite is an ACID compliant open-source embedded database. It implements most of the SQL92 standard. See
http://sqlite.org/features.html for more details.

SIGS, SIGS and more SIGS!

The following Special Interest Groups (SIG) hold meetings
throughout the year for the benefit of NYOUG members:

DBA SIG – Database Administration

Data Warehouse SIG – Business Intelligence
Web SIG – Web / XML / Java / Weblogic / APEX / Fusion

Long Island SIG – Nassau/Suffolk area - All topics

www.nyoug.org 212.978.8890 22

The Captain of New York – Excelsior!
By Carl G. Esposito

(I’m pretty sure this is the closest I will ever come to associating myself with the man pictured below!)

When NYOUG was formed in 1984, Derek Jeter was an anonymous 10 year old boy living in Michigan. New York
City was on a major rebound from the moribund 70s which were dominated by fiscal insolvency, corporate exoduses and
the ultimate manifestation of crime and disrespect – graffiti. Over the ensuing 30 years, all three would blossom in
different ways that no one could envision or anticipate. Excelsior, which, incidentally, is the New York State motto,
means striving for excellence, onward and upward, superior … both Derek and New York would live up to this
exclamation, whether dealing with aggressive competitors on the baseball field or the horrific World Trade Center
tragedies, both have shown the utmost in class. NYOUG’s rich past has also hinted at greatness, and perhaps we should
consider incorporating the word “Excelsior” in our mission statement, or as our motto!
Moshe Tamir and others were forming a small but growing discussion group of “data processing” folks who used this new
database product called Oracle. As the 80s came to an end and client/server, as well as PCs/LAN-based systems,
proliferated, Tony Ziemba led a more formalized and larger group into NYOUG’s expansive years of dominance which
featured our evolution into a UG with a reputation of assertiveness and professionalism. For a complete history of the
highlights of NYOUG, please refer to the following link from our 25th anniversary commemoration of 2009:

http://nyoug.org/Presentations/2009/Dec/NYOUG_25th_Anniversary_slides2.pdf

www.nyoug.org 212.978.8890 23

Just about the time Jeter joined the Yankees full time in 1996, New York was showing signs of its reemergence into
greatness – a revitalized Times Square, the drop off of violent and quality of life crimes, an uptick in professional
employment and business activity and an unprecedented increase in tourism and popularity. Derek’s presence helped lead
the Yankees to their first World Series championship in 18 years and the victory energized the City, making the New
York vibe more alive than ever before. He was what everyone aspired to be: cool, classy and soon to be rich – and most
importantly, a person of integrity (well, it isn’t entirely clear that everyone wants to be that, but I’d like to think so). Jeter
served as another tourist attraction of New York, drawing throngs of fans and followers (and their dollars) to the ‘nether
regions’ of the South Bronx, where one could now easily drop a twenty for a hot dog and beer. The Yankees posted 17 of
their top 20 season attendance records during Jeter’s tenure. He even made it to the cult phenomenon on TV – Seinfeld!
Changes in the worldwide economy, during this time, proved to be especially favorable to New York because of our
highly developed transportation and communications infrastructure, as well as the massive population base, which
includes the entire region revolving around Manhattan. The city's image transformed from being one of a bygone,
decaying metropolis to one of, if not the ultimate, of the world's preeminent global venues.
Some of the milestones that contributed to New York’s resurgence into greatness, during the age of Jeter, were the
fortification of our town as the media center of the world, the rebirth of Wall Street, as the city reclaimed its role as the
center of the worldwide financial industry, and the genesis of Silicon Alley, which has become home to notable tech firms
such as Google, Bloomberg and Foursquare. Crime was significantly cut by policy and tactic and probably also by
sociological changes in the way people spend their time (more electronics and such). Neighborhood restoration projects
and developer funded real estate development, combined with a general uptick in social and cultural activity, laid the
groundwork for business recovery and a renewed influx in population (of the creative type). Even the events of the early
part of this century (tech bubble, 9/11 and the financial meltdown of 2008) couldn’t make a permanent dent in New
York’s spirit and tenacity, as we’ve always been known for – we don’t stay down for long when the going gets tough!

www.nyoug.org 212.978.8890 24

A baseball player has a finite lifespan whereas a user group and a great city do not …while Mr. Jeter has announced that
this will be his last active year as a player, we fully anticipate that NYOUG and the metropolis of New York will go on
indefinitely. In addition to his off-the-field accomplishments and classy demeanor, Jeter’s official on-the-field highlights
include:

Oct. 26, 1996: The 22-year-old wins the first of five World Series rings as the Yankees dethrone the Atlanta
Braves.
Nov. 5, 1996: Jeter is named American League rookie of the year in a unanimous vote.
July 20, 1998: Jeter gets career hit No. 500, a single vs. the Detroit Tigers
Oct. 21, 1998: Jeter wins ring No. 2 as the Yankees sweep the San Diego Padres. The team victory caps a year of
personal milestones for Jeter, which included the first of 12 All-Star selections and the first of seven 200-hit
seasons.
Oct. 27, 1999: The Yankees complete back-to-back World Series sweeps; the Braves are the victims this time.
Jeter goes 6-for-17 against Atlanta's vaunted staff.
Sept. 25, 2000: Jeter collects hit No. 1,000, a single vs. Tigers knuckleballer Steve Sparks.
Oct. 26, 2000: Jeter continues his postseason brilliance by earning World Series MVP honors vs. the New York
Mets. The Bombers also achieve a three-peat in the Subway Series.
Feb. 9, 2001: Already a Yankees icon, Jeter agrees to a 10-year contract extension worth a then-franchise-record
$189 million.
Nov. 1, 2001: Jeter becomes Mr. November with his walkoff homer in the 10th inning of World Series Game 4
vs. the Arizona Diamondbacks.
June 3, 2003: Yankees owner George Steinbrenner officially names Jeter the Yankees' team captain.
May 26, 2006: Almost 11 years to the day after hit No. 1, Jeter reaches 2,000, singling vs. Kansas City Royals
righthander Scott Elarton.
Aug. 22, 2008: Hit No. 2,500 comes against Baltimore Orioles righthander Radhames Liz.
Nov. 4, 2009: Jeter and the Yankees beat the defending champion Philadelphia Phillies in the World Series. Jeter
bats .407 (11-for-27) in the six games and earns his 5th ring.
July 9, 2011: Jeter homers against Tampa Bay Rays lefthander David Price in his second-at-bat for hit No. 3,000.
He goes 5-for-5 in the game.

So, the point of this article is to recognize Derek Jeter as not only a sports or Yankees great, but as a great New Yorker
and the epitome of excellence in both performance and character. Excelsior! And to parallel this to the greatness of our
user group and hometown, past, present and future. Will Derek continue to have a presence in New York and in the sports
world? I think so – plus he could easily have a future in politics as our mayor, governor or maybe a U.S. senator.
Will New York be able to continue its tradition of being a progressive and energetic center for the world’s best and
brightest? Our rich tradition and heritage, including the creation of the landmarks movement, courtesy of the thoughtless
destruction of the original Penn Station, which was so intelligently crafted as part of an aggressive push and engineering
marvel, by a private sector company, for the public good (as well as profit), the supportive environment provided to social

www.nyoug.org 212.978.8890 25

pioneers like Jackie Robinson and Gloria Steinem, and myriad ethnic contributions made by millions of immigrants –
foretell of a bright future of magnificent architecture, a culturally rich environment, and compassionate and visionary
living (New York was credited by the World Health Organization as one of the global, age-friendly cities of the future –
meaning that we are well positioned to support the nation’s aging population with a rich infrastructure of transportation,
shopping and services). And late night TV is coming back to NYC too!
Lastly, will NYOUG morph into a new force in support of professional computing? We may have to change our format
of delivering services to our members and we probably need to take some new directions, but if history is any indication,
NYOUG will adapt and grow and thrive. Excelsior!
The future – who knows what it holds?

www.nyoug.org 212.978.8890 26

Edition-Based Redefinition: Testing App Upgrades
without Being Live

Melanie Caffrey, Oracle America, Inc.

The problem of how to successfully upgrade a PL/SQL application without incurring much downtime, but allowing
yourself adequate post-upgrade testing has been an on-going problem since PL/SQL was first introduced. 11gR2 changed
that with the introduction of Edition-Based Redefinition. Using Edition-Based Redefinition, it is now possible to have
multiple versions of your code in place on production: one that is visible and usable by the every-day users of the
application, and one that is visible only to developers, testers, and other privileged users.
As most developers and DBAs tasked with rolling out PL/SQL application upgrades can attest to, almost all PL/SQL
application upgrades, no matter how small, require some amount of downtime in order to avoid the otherwise inevitable
locking and blocking that occurs. It is often not possible to obtain long or frequent downtime windows, the testing
window during downtime may not be long enough to be deemed adequate for the testers, and last, but certainly not least,
an upgraded PL/SQL application can be difficult to back out of, if necessary. Oracle’s 11gR2 version of the database has
changed this situation by providing developers and DBAs with a high-availability tool, Edition-Based Redefinition, that
gives those responsible for rolling out PL/SQL application upgrades the ability to have more than one version (or, edition)
of a PL/SQL application running in a database instance and schema at the same time.

EBR: Edition-Based Redefinition
Edition-Based Redefinition, or simply EBR, allows you to have more than one occurrence of an editionable object.
PL/SQL objects are editionable, for example. This is so due to a change in the Oracle namespace resolution scheme as of
Oracle 11gR2. PL/SQL objects are no longer required to adhere to the <schema>.<object> resolution scheme that was
always the norm prior to Oracle 11gR2. For PL/SQL objects, the resolution scheme has been expanded to
<schema>.<edition>.<object>. The edition is implied, never hard-coded by the developer.
As you can see, it is now possible, for example, for the SCOTT user to have more than one occurrence of, say, a
procedure called UPDATE_SALARY. This user could deploy the edition of UPDATE SALARY that is used by the
general user population SCOTT.EDITION_1.UPDATE_SALARY. However, if the developers discover a bug in
UPDATE_SALARY and would like to perform an online application upgrade to fix that bug, and have ample time to test
it with a few privileged users, then if they have created a second edition of their application, they can perform this upgrade
into, say, EDITION_2, and have it running and testable, all while their regular application users continue to work with
EDITION_1. Only when they are ready to have their users work with EDITION_2 do the developers/DBAs need to
actually switch the users to use EDITION_2. This type of flexibility in online PL/SQL application upgrade capability
allows developers and DBAs the heretofore unheard of ability to provide more high availability for their PL/SQL
applications and increased testing windows (if desired) for their QA personnel.

The Pieces and Parts of EBR

1) The Edition
As of 11.2, each database (whether you choose to use EBR or not) comes with a new object type: an edition. Each edition
can have its own private occurrence of the same object (see the example earlier with SCOTT’s EDITION_1 occurrence of
the UPDATE_SALARY procedure and his EDITION_2 occurrence of the same procedure). By default, every 11.2 (and
later) database has at least one edition: ORA$BASE. You can verify this default edition by running the following query
as SYSDBA.

CONN / AS SYSDBA

SELECT property_value

www.nyoug.org 212.978.8890 27

 FROM database_properties
 WHERE property_name = 'DEFAULT_EDITION';

PROPERTY_VALUE

ORA$BASE

And you can always verify which edition you are currently using or looking at by running the following SQL to check
your session’s current edition.

SQL> SELECT SYS_CONTEXT('USERENV', 'SESSION_EDITION_NAME')
 2 AS edition FROM dual;

 EDITION
 --
 ORA$BASE

When you choose to start using EBR, the first edition you create will be a child of ORA$BASE. Code changes (like an
update to UPDATE_SALARY) can be installed in this new edition without being seen by the old (original, say,
ORA$BASE) edition. The most common PL/SQL application changes are for PL/SQL bug fixes or functionality
enhancements that involve changes to only stored PL/SQL objects like packages, procedures, functions and triggers, to
name a few. For example, the following function takes in an employee ID and percentage value and returns the new
calculated salary value for an employee.

SQL> CREATE OR REPLACE FUNCTION sal_increase
 2 (p_increase IN VARCHAR2,
 3 p_employee IN NUMBER)
 4 RETURN NUMBER
 5 IS
 6 v_new_salary NUMBER := 0;
 7 BEGIN
 8 SELECT (salary * p_increase) + salary
 9 INTO v_new_salary FROM employee
 10 WHERE employee_id = p_employee;
 11 RETURN v_new_salary;
 12 END;

And to find out with which edition(s) this function is associated, you can always look to see in which edition(s) your
PL/SQL objects have been installed by querying the USER_OBJECTS data dictionary view which has a new column
called EDITION_NAME as of 11gR2, as the following query demonstrates:

SQL> select object_name, object_type, status, edition_name
 2 from user_objects;
OBJECT_NAME OBJECT_TYPE STATUS EDITION_NAME
----------- ----------- ------- --------------------
EMPLOYEE TABLE VALID
SAL_INCREASE FUNCTION VALID ORA$BASE

As you can see, the SAL_INCREASE function is currently associated with only one edition, the default ORA$BASE
edition. Notice also, that there is no edition name value for the EMPLOYEE table. This is because only PL/SQL objects
like packages, procedures, functions, triggers and views (though not materialized views), private synonyms, and all of
these objects’ related metadata such as GRANT privileges, are editionable. Tables are not editionable. (Though we will
see shortly how tables can be made to seem editionable.)

www.nyoug.org 212.978.8890 28

Now let’s say that someone has requested an enhancement to the SAL_INCREASE function, and that it would be more
correct to also pass in a date value that checks to see when the employee was hired. This function should now only return
an increased salary value if the passed-in employee was hired before a specified time period. An additional set of
mandates are that this code change be made with minimal downtime, be given sufficient testing by the QA team, and be
implemented in such a way that its changes can be easily reversed. This situation is perfect for using EBR. But first, you’ll
need to ready your application to use EBR.

Edition Setup
First, you’ll need to create a new edition. You need the CREATE ANY EDITION or DROP ANY EDITION system
privileges to perform either of those actions. Once you have the CREATE ANY EDITION system privilege you may
create a new edition using the CREATE EDITION command as follows:

SQL> create edition app_edition_2
 2 as child of ora$base;
 Edition created.

SQL> select * from dba_editions;

EDITION_NAME PARENT_EDITION_NAME USA
---------------------- ------------------------ ---
ORA$BASE YES
APP_EDITION_2 ORA$BASE YES

The query above illustrates one of the new data dictionary views available in 11gR2, DBA_EDITIONS. This data
dictionary view lists all of the editions available for your database, alongside each edition’s parent (in the result set above,
since ORA$BASE is the default edition that is installed out of the box with any installation of 11gR2, it has no parent),
and lets you know whether the listed edition is USABLE (since you can set an edition to be unusable). After you’ve
created a new edition, you must enable your application user to be able to use the new edition (execute code) and/or alter
PL/SQL units within the new edition (run CREATE OR REPLACE statements). In order to allow your application user to
alter editionable objects within more than the default ORA$BASE edition, it must be altered to be editions-enabled. The
following query demonstrates this syntax:

SQL> alter user app_user
 2 enable editions;
 User altered.

Now the application user, APP_USER, can run CREATE OR REPLACE and GRANT statements in multiple editions.
However, it still needs to be granted explicit access to the newly-created edition, APP_EDITION_2, created earlier. This
access is achieved with the following SQL:

SQL> grant use
 2 on edition app_edition_2
 3 to app_user;
 Grant succeeded.

With this permission the application user will be able to switch to the new version and execute code within it by running
SQL such as the following:

CONN app_user/pw

SQL> alter session
 2 set edition = app_edition_2;
Session altered.

www.nyoug.org 212.978.8890 29

SQL> SELECT SYS_CONTEXT('USERENV', 'SESSION_EDITION_NAME')
 2 AS edition FROM dual;

EDITION
--
APP_EDITION_2

And if the user executes the same query from USER_OBJECTS demonstrated earlier, he will see the following results:

SQL> select object_name, object_type, status, edition_name
 2 from user_objects;
OBJECT_NAME OBJECT_TYPE STATUS EDITION_NAME
----------- ----------- ------- --------------------
EMPLOYEE TABLE VALID
SAL_INCREASE FUNCTION VALID ORA$BASE

The reason for this is that when an edition is created as a child of another edition it inherits its parent editions’ editionable
objects. These inherited objects look no different between the parent and child editions when a child edition is first
created. No change to the data dictionary for the inherited objects is necessary because the inherited objects are currently
merely pointers to the parent edition’s objects. It is only once the application user makes a change to one of the
editionable objects in the new edition that the query above will yield different results. Now let’s consider the following
patch enhancement to the SAL_INCREASE function:

SQL> CREATE OR REPLACE FUNCTION sal_increase
 2 (p_increase IN VARCHAR2,
 3 p_employee IN NUMBER, p_hire IN DATE)
 4 RETURN NUMBER
 5 IS
 6 v_new_salary NUMBER := 0;
 7 BEGIN
 8 SELECT (salary * p_increase) + salary
 9 INTO v_new_salary FROM employee
 10 WHERE employee_id = p_employee AND hire_date <= p_hire;
 11 RETURN v_new_salary;
 12 END;

With this new version of the SAL_INCREASE procedure installed into the APP_EDITION_2 edition, we can execute the
following query to see just how many editions accessible to our application user have unique versions of this function:

SQL> select object_name, object_type, status, edition_name
 2 from user_objects_ae;
OBJECT_NAME OBJECT_TYPE STATUS EDITION_NAME
----------- ----------- ------- --------------------
EMPLOYEE TABLE VALID
SAL_INCREASE FUNCTION VALID ORA$BASE
SAL_INCREASE FUNCTION VALID APP_EDITION_2

A query against the USER_OBJECTS_AE data dictionary view (new as of 11gR2) demonstrates how, once our
application user makes a code change to the SAL_INCREASE function in the APP_EDITION_2 edition, that change
actualizes the function within the edition and it is no longer pointing to the version of the function that exists in the parent
edition. This is why you can now see two rows listed for the SAL_INCREASE function within the application user’s list
of objects.

www.nyoug.org 212.978.8890 30

2) Editioning View
In many PL/SQL application upgrade patch scenarios you will most likely be making changes to PL/SQL units similar to
the change shown with the SAL_INCREASE function. However, if you need to make only column additions or change
the structure of transaction tables, you will need to create an editioning view for each table you wish to modify. An
editioning view exposes a different projection of a table into each edition to allow each edition to see only its own
columns. Since a table is not editionable, it cannot have the same name as any other object in your edition. Also, since you
want your application to reference a table name in the same way it always has, and you don’t want to incur downtime to
make structural changes to this table (and run into locking/blocking issues or having-to-recompile code issues), it becomes
important to devise a way to accomplish both tasks.
The editioning view allows you to not have to change your application’s references to a particular table while, at the same
time, make structural changes behind the scenes. First things first, to enable your application’s tables to be able to use
editioning views and, therefore, use EBR functionality you’ll need to rename each table. For this particular act of
renaming your tables, you will require an outage (hopefully a one-time outage). You can rename each table to
differentiate it slightly from the editioning view you will create for it:

alter table rpm rename to rpm_t;

Then create an editioning view for each of your renamed tables with the original table name:

create editioning view rpm as select * from rpm_t;

If your intent is to change the structure of a column, then you do not change it (as this would invalidate any dependent
code and would defeat the purpose of using EBR), but instead, you add a replacement column. For example, I work with
the Unbreakable Linux Network product for Oracle Corporation. This means I work with RPMs, packages that are used to
update and enhance a user’s Red Hat or Oracle Linux installation. These RPMs often have a structure that looks like this:

Name Epoch Version Release

kernel (null) 2.6.32 100.21.1.el5

kernel (null) 2.6.18 92.1.6.el5

That is: name.epoch.version.release, together all comprise a single package (RPM). Supplying information about the
latest, greatest RPM a user must download and install on their system is of paramount importance to us. All four parts are
stored in VARCHAR2 columns. Figuring out the sort mechanism for the above can be done in SQL (using, for example,
some carefully-coded SUBSTR and INSTR constructs), but can be a bit unwieldy at times. In one exercise we wanted to
pre-parse RPM parts like VERSION and RELEASE as they are concatenated pieces in and of themselves. The goal was to
try and store each dot-delimited piece of the VERSION and RELEASE columns in their own separate columns. For
purposes of brevity the below example includes only versions and releases with four parts:

Name Epoch V1 V2 V3 V4 R1 R2 R3 R4

kernel (null) 2 6 32 (0) 100 21 1 el5 (000)

kernel (null) 2 6 18 (0) 92 1 6 el5 (000)

www.nyoug.org 212.978.8890 31

The new VERS1 … and REL1 … etc. columns were created with the NUMBER datatype. This way, instead of comparing
VARCHAR2 strings, we can compare individual numeric values.

To achieve this, we altered our table (in this example, RPM_T) as needed.

alter table rpm_t add (vers1 number(10), vers2 number(10) …. rel1 number(10), rel2
number(10) …);

In the new example table layout above, (vers1, etc, is shortened to V1, etc. so that all columns can display in the
example). At this point, the table contains the old VERSION and RELEASE columns, as well as the new VERS1 … and
REL1 … and so forth, columns.
Since triggers are PL/SQL units, you will need to drop all triggers that refer to (in this example) RPM_T and recreate
them on RPM. You will also need to revoke privileges from RPM_T and grant them to RPM. Indexes and constraints,
however, will remain in force on RPM_T. They follow the rename from RPM to RPM_T as they are not editionable,
themselves, and are associated only with other non-editionable objects. Many, if not most, of your application upgrades
can be completed just by using editions and editioning views.

3) Crossedition Triggers
If, while you have both editions available and usable, you cannot stop DML, then your application needs to keep pace
with such changes. The most complex piece of EBR (and the one you will most likely use only seldomly) is the
crossedition trigger. The crossedition trigger, for all intents and purposes, looks just like any other trigger except that it
has special firing rules and a few extra keywords that tell Oracle that it is a trigger used specifically to keep multiple
versions (editions) of applications in synch. Any crossedition trigger that needs to keep a parent and child edition of an
application in synch is created in the child edition. The special firing rules work as follows:

1. When the parent edition’s table column values are changed, you need to propagate these changes to the child edition’s

table columns. For this instance, you must put in place a forward crossedition trigger.
2. Conversely, when the child edition’s table column values are changed, you need to propagate these changes to the

parent edition’s table columns. And, for this instance, you must put in place a reverse crossedition trigger.

For this example, our forward crossedition trigger looked similar to the following:

SQL> create or replace trigger rpm_fwdxedition
 2 before insert or update of version, release on rpm_t
 3 for each row
 4 forward crossedition
 5 declare
 6 v_verstring VARCHAR2(50) := ‘.’||:new.version||’.’;
 7 v_relstring VARCHAR2(50) := ‘.’||:new.release||’.’;
 8 begin
 9 :new.ver1 := substr(v_verstring,
10 instr(v_verstring,'.',1,1)+1, instr(v_verstring,'.',1,2) -
11 instr(v_verstring,'.',1,1)-1);
12 …
…
21 :new.rel1 := substr(v_relstring,
22 instr(v_relstring,'.',1,1)+1, instr(v_relstring,'.',1,2) -
23 instr(v_relstring,'.',1,1)-1);
24 …
33 end;
34 /
Trigger created.

www.nyoug.org 212.978.8890 32

And our reverse crossedition trigger looked similar to the following:

SQL> create or replace trigger rpm_revxedition
 2 before insert or update of ver1, ver2, ver3, ver4, rel1, rel2,
 3 rel3, rel4, on rpm_t
 4 for each row
 5 reverse crossedition
 6 begin
 7 :new.version :=
 8 rtrim(:new.ver1||’.’||:new.ver2||’.’||:new.ver3||’.’||
 9 :new.ver4, ‘.’);
10 :new.release :=
11 rtrim(:new.rel1||’.’||:new.rel2||’.’||:new.rel3||’.’||
12 :new.rel4, ‘.’);
13 end;

As you can see what differentiates these particular triggers as crossedition triggers are the keywords, in each trigger
example, just after the FOR EACH ROW command. The new keywords are FORWARD CROSSEDITION (which
effectively means, whenever this trigger is fired, before making the requested DML changes, please make the changes that
follow the BEGIN keyword in this trigger in the child edition for the RPM_T table), and REVERSE CROSSEDITION
(whenever this trigger is fired, before making the requested DML changes, please make the changes that follow the
BEGIN keyword in this trigger in the parent edition for the RPM_T table). If you are using reverse crossedition triggers,
you are performing a hot rollover, since you are keeping both editions of your application in synch simultaneously.
Note also that these types of triggers are created upon the actual table, RPM_T, even though our other PL/SQL triggers
have been recreated on the editioning view, RPM. This is because the crossedition trigger is a short-term high-availability
solution that is intended solely to assist in an online application upgrade. Once you are satisfied with your upgrade results,
there should be no need to continue firing any crossedition triggers, because there should be no need to continue
supporting multiple versions of table columns. At some point, you will choose and stick with the version of the columns
that best meets your needs, and mark the other columns as unused, and recoup the space used by the unused columns at a
convenient later time.

Migrating Any Remaining Data
Though crossedition triggers will help you to keep any changes in synch between columns of a table in two editions,
eventually you’ll want to ensure that all data values have been successfully migrated from the old columns to the new
columns. Remember that unless your crossedition triggers touch every old value, some values will have to be manually
migrated to the new columns. If your table is not very big and it won’t adversely affect your application to lock the entire
table, you can force every row to be migrated (via the forward crossedition trigger you have in place) by executing an
UPDATE statement similar to the following:

SQL> update rpm_t
 2 set version = version,
 3 release = release;

However, if this table is quite large, consider updating it a little at a time with the (new as of 11gR1)
DBMS_PARALLEL_EXECUTE package. You can create a task that will update (in the below example, ROWID) chunks
of a table, at a time, therefore only locking small portions of a table at a time:

SQL> begin
 2 dbms_parallel_execute.create_task(
 3 'update rpm_t');
 4 dbms_parallel_execute.create_chunks_by_rowid
 5 (task_name => 'update rpm_t',

www.nyoug.org 212.978.8890 33

 6 table_owner => user,
 7 table_name => ‘RPM_T',
 8 by_row => false,
 9 chunk_size => 10);
 10 end;
 11 /

Then run the task with a chosen range of ROWIDs and level of parallelism:

SQL> begin
 2 dbms_parallel_execute.run_task
 3 (task_name => 'update rpm_t',
 4 sql_stmt => 'update rpm_t
 5 set version = version, release = release
 6 where rowid between :start_id and :end_id',
 7 language_flag => DBMS_SQL.NATIVE,
 8 parallel_level => 2);
 9 end;

When you are satisfied with the result, you can simply drop this task:

SQL> begin
 2 dbms_parallel_execute.drop_task('update rpm_t');
 3 end;
 4 /
PL/SQL procedure successfully completed.

Moving to the New Edition
Once you are ready to migrate your end users to the new edition you can grant them access to the new edition:

SQL> grant use on edition app_edition_2 to public;
Grant succeeded.

And create a logon trigger that sets the new default edition any time a user logs directly into the database:

SQL> create or replace trigger set_edition_on_logon
 2 after logon on database
 3 begin
 4 dbms_session.set_edition_deferred(‘APP_EDITION_2');
 5 end;
 6 /
Trigger created.

And if you are using a connection pool and are using APEX you can change your configuration as follows:

SQL> begin
 dbms_epg.set_dad_attribute('APEX', 'database-edition',
 'APP_EDITION_2');
 end; --If using the PL/SQL Embedded Gateway

In your dads.conf file: PlsqlDatabaseEdition*
 --If using the Oracle Apache Http Server

www.nyoug.org 212.978.8890 34

Rolling Back
If you haven’t gone live with the new edition of your application, you can drop the new child edition (cascade), set any
new replacement columns you created unused, and recoup any space at a convenient later time. Keep in mind that,
without a hot rollover in place (that is, without the use of REVERSE CROSSEDITION triggers), your grace period for
being able to rollback an application upgrade ends once you go live with (start using) the new edition of the application.

Oracle 12c Enhancements
When this feature was introduced in Oracle 11gR2, the cardinal rule of thumb was always noneditionable objects can
never depend on editionable objects because, for the noneditionable object, editionable objects are invisible during name
resolution. As of 12c, however, there are some exceptions to this rule. Two types of noneditionable objects can now
depend on editionable objects with the use of an evalutation edition. An evaluation edition is simply an edition. But to a
materialized view or a virtual column, it is also a set of key words that must be present when either of these two objects is
created or changed in order for them to be able to depend on editionable objects. For example:

CREATE MATERIALIZED VIEW refresh_sal_vals
EVALUATE USING EDITION app_edition_2
ENABLE QUERY REWRITE
UNUSABLE BEFORE EDITION app_edition_2
UNUSABLE BEGINNING WITH EDITION ora$base . . .
;

Conclusion
EBR is not for the convenience of the developer or the DBA. It is a high-availability solution. And like all high-
availability solutions it requires that you implement it with planning and care. If as-close-to-zero downtime when
performing PL/SQL application upgrades is one of your company mandates, then you can easily be brought closer to that
goal with EBR. And, in the spirit of saving the best for last, it is nice to be able to inform you that EBR is freely available
to any user of any version of Oracle 11gR2 on up.

About the Author
Melanie Caffrey is a senior development manager for Oracle Corporation. She is co-author of several technical
publications including Beginning Oracle SQL, Expert PL/SQL Practices for Oracle Developers and DBAs, and Expert
Oracle Practices: Oracle Database Administration from the Oak Table (Apress), and the SQL 101 series of articles for
Oracle Magazine. She instructed students in Columbia University’s Computer Technology and Applications program in
New York City, teaching advanced Oracle database administration and PL/SQL development, and she is a frequent Oracle
conference speaker and a member of the Oaktable Network.

www.nyoug.org 212.978.8890 35

Expanding the SQL Horizons: PL/SQL User-Defined
Functions in the Real World

Michael Rosenblum, Dulcian, Inc.

The good old database half-wisdom/half-joke, often attributed to Tom Kyte, is still as valid as ever:

1. If you have a thing to do in the database, do it in SQL.
2. If you cannot do it in SQL, do it in PL/SQL.
3. If you cannot do it in either SQL or PL/SQL, do it in Java.
4. If you cannot do it in Java, do it in C.
5. If you cannot do it in C, are you sure that it needs to be done?

The reality is a bit more complicated because there are many dimensions involved when comparing different approaches
such as performance, maintainability, available expertise, etc. The problem becomes even more challenging when the task
crosses the boundaries of multiple languages. Overall, the rule of thumb states that working in the same environment is
much better than jumping between multiple ones (of course, there are exceptions). You can pay a high price for
unnecessary context switches, especially in terms of CPU costs. The key qualifier in the last sentence is “unnecessary.”
You should not try to stay within the same language environment simply for the sake of environmental consistency.
Different tools are better suited for different purposes, but the goal of decreasing context switches is a sound one.
Knowing how to appropriately select between SQL-based and PL/SQL-based solutions is one of the most important issues
in Oracle database development. For the purposes of this paper, two less common examples of using PL/SQL in actual
systems development were selected. The first illustrates the notion of performance tuning by going outside of the regular
solution patterns, while the second one describes a case of extending standard SQL functionality. Both of these examples
demonstrate the depth of PL/SQL language. It can do significantly more than you might imagine.

Making Life Simpler by Switching to PL/SQL
It is very common for SQL statements to grow more complex over time. If the system has been in production for a while,
the once good decision to use SQL may eventually become less and less desirable. This is especially true when volumes
change. Solutions that worked well in a smaller scope very often only scale so far, and can eventually lead to catastrophe.
The following real world example demonstrates how switching from SQL to PL/SQL saved the day when the
requirements went beyond the scope of the original implementation.
One of the most often encountered problems related to fluctuating between SQL and PL/SQL is the never-ending quest to
find an efficient implementation of the “main search” functionality. About 90% of contemporary applications include
some type of main screen with a number (usually a lot) of different filtering criteria that presents a grid with matching
results. At first glance, this would seem to be a straightforward SQL implementation, especially if the search is limited to
one table. But eventually, you will need to search using data from a group of sources, using multi-select, and/or a
proximity search (LIKE, SOUNDEX, etc.). Gradually, the original simple query becomes so convoluted that any time you
are asked to add an extra filter, you automatically budget at least a week of work time because you are not sure of the
potential impact on other possible permutations.
Years ago, the author developed his own way of building a main search engine using Dynamic SQL. Obviously, Dynamic
SQL allows you to build and execute SQL and PL/SQL on the fly. You can also use object collections in conjunction with
Dynamic SQL. Combining these features means that the results of the search should be represented as object collections
and should be built to match the specified search criteria. Instead of building a single generic SQL statement that can
survive all possible search permutations, you should build customized SQL statements for each case.

www.nyoug.org 212.978.8890 36

The following is a basic example of such an implementation. Assume that there are requirements to filter employees by
employee name, employee ID, and employee location (two filters are from the EMP table, while the last one is from the
DEPT table). This requires an output structure that will represent your search results as shown here:

CREATE TYPE emp_search_ot AS OBJECT (empno_nr NUMBER,
 empno_dsp VARCHAR2(256),
 comp_nr NUMBER);
CREATE TYPE emp_search_nt IS TABLE OF emp_search_ot;

It is critical to make EMP_SEARCH_NT a SQL type using a CREATE TYPE statement and not a part of any package.
This is necessary because SQL object collection types can be converted into a regular SQL set using the built-in function
TABLE (each object attribute becomes a column). Starting with Oracle 12c, you can use also package-defined collections
for TABLE functions within PL/SQL program units. Even then, you will not be able to run direct SQL statements or make
the TABLE function a part of a view if you don’t have SQL type.
Now you can build a function that will return an object collection. Note that, in addition to filters, there is a default limit
included. This should become a habit for anyone working with collections. You do not want to bring millions of rows into
memory just because a user didn’t specify any conditions.

CREATE FUNCTION f_search_tt
 (i_empno NUMBER:=NULL, i_ename_tx VARCHAR2:=NULL, i_loc_tx VARCHAR2:=null,
 i_limit_nr NUMBER:=50)
RETURN emp_search_nt IS
 v_out_tt emp_search_nt:=emp_search_nt(); -- output structure
 v_from_tx VARCHAR2(32767):='emp';
 v_where_tx VARCHAR2(32767):='rownum<=v_limit_nr';
 v_plsql_tx VARCHAR2(32767);
BEGIN
 IF i_empno IS NOT NULL THEN
 v_where_tx:=v_where_tx||chr(10)||'and emp.empno=v_empno_nr';
 END if;
 IF i_ename_tx IS NOT NULL THEN
 v_where_tx:=v_where_tx||chr(10)||'and emp.ename like ''%''||v_ename_tx||''%''';
 END IF;
 IF i_loc_tx IS NOT NULL THEN
 v_from_tx:=v_from_tx||chr(10)||'join dept on (emp.deptno=dept.deptno)';
 v_where_tx:=v_where_tx||chr(10)||'and dept.loc=v_loc_tx';
 END IF;
 v_plsql_tx:=
 'declare '||chr(10)||
 'v_limit_nr number:=:1;'||chr(10)||
 'v_empno_nr number:=:2;'||chr(10)||
 'v_ename_tx varchar2(256):=:3;'||chr(10)||
 'v_loc_tx varchar2(256):=:4;'||chr(10)||
 'begin '||chr(10)||
 'select emp_search_ot('||
 'emp.empno,emp.ename||''(''||emp.job||'')'','||
 'emp.sal+nvl(emp.comm,0))'||chr(10)||
 'bulk collect into :5'||chr(10)||
 'from '||v_from_tx||chr(10)||
 'where '||v_where_tx||';'||chr(10)||
 'end;';
 $IF $$MishaDebug $THEN
 dbms_output.put_line('<<Script that was executed>>'||chr(10)||v_plsql_tx);
 $END IF;
 EXECUTE IMMEDIATE v_plsql_tx USING

www.nyoug.org 212.978.8890 37

 IN i_limit_nr, IN i_empno, IN i_ename_tx, IN i_loc_tx,
 OUT v_out_tt;
 RETURN v_out_tt;
END;

The function above has a number of points requiring explanation:
 Table EMP is always used, while table DEPT is joined only when location is specified. ANSI SQL comes in very

handy here because it allows for clearly split filtering and joining.
 You do not want to build permutations of EXECUTE IMMEDIATE to match different combinations of bind

parameters that could be referenced. For this reason, it is much easier to generate anonymous blocks to contain all
parameters and pass real values as defaults. Using this approach, you still have the full power of bind variables, but
you do not have to worry about their order or number.

 The EMP_SEARCH_OT constructor must be included in the query because the output result is an object collection,
and not a record.

 While building all portions of the queries, it is critical to keep the attributes fully qualified (TABLE.COLUMN).
 If you are using Dynamic SQL, always output it before execution. Doing this saves a lot of debugging time.

The most important idea behind the function above is to achieve the highest level of flexibility without losing
performance or readability. Use the following code to a search and see what happens:

SQL> SELECT * FROM TABLE(f_search_tt(NULL,'A','CHICAGO',2));
 EMPNO_NR EMPNO_DSP COMP_NR
---------- -------------------- ----------
 7499 ALLEN(SALESMAN) 1900
 7521 WARD(SALESMAN) 1750
<<Script that was executed>>
Declare
v_limit_nr number:=:1;
v_empno_nr number:=:2;
v_ename_tx varchar2(256):=:3;
v_loc_tx varchar2(256):=:4;
begin
select
emp_search_ot(emp.empno,emp.ename||'('||emp.job||')',emp.sal+nvl(emp.comm,0))
bulk collect into :5
from emp
join dept on (emp.deptno=dept.deptno)
where rownum<=v_limit_nr
and emp.ename like '%'||v_ename_tx||'%'
and dept.loc=v_loc_tx;
end;

The join was built on the fly and used only when it was actually needed. This example illustrates the notion that the best
tuning approach is to do nothing unless there is no other way. It also points out that constructing SQL statements
dynamically can significantly shift the focus of all development efforts. Instead of trying to find a universal solution, you
can divide this task into a set of smaller tasks and solve them one at a time. For example, depending upon the columns and
tables involved, you can also add hints, change AND-conditions to OR-conditions, etc. As mentioned previously, you pay
the price of overhead, but gain a lot of flexibility, which can often be more important.

www.nyoug.org 212.978.8890 38

Using PL/SQL to Fill Functionality Gaps
Many developers were relieved to learn that Oracle eventually created an official built-in function LISTAGG that
provides a simple way of putting together a group of columns into a single text string. As long as you are working with a
limited set of rows, it works like a charm:

SQL> SELECT deptno, listagg(ename,',') WITHIN GROUP(ORDER BY ename) list_tx
 2 FROM emp
 3 GROUP by deptno;
 DEPTNO LIST_TX
---------- -------------------------------------
 10 CLARK,KING,MILLER
 20 ADAMS,FORD,JONES,SCOTT,SMITH
 30 ALLEN,BLAKE,JAMES,MARTIN,TURNER,WARD

But there is a minor problem. LISTAGG is a regular SQL function, which means that it cannot return more than 4000
characters (even in Oracle 12c which can support columns up to VARCHAR2(32767)!). If the concatenated result
exceeds this limit, it crashes and displays the error: “ORA-01489: result of string concatenation is too long”.
The following shows a process for creating your own LISTAGG function that returns a CLOB. Currently, Oracle does not
allow aggregate functions to have multiple parameters, but LISTAGG needs two: a value to aggregate and a separator. To
overcome this restriction, you can create an object type with two attributes so you have a single parameter of composite
nature:

CREATE OR REPLACE TYPE listAggParam_ot IS OBJECT
 (value_tx VARCHAR2(4000),
 separator_tx VARCHAR2(10))

The next step is to create a special object type required by the Oracle Extensibility Framework, or to be precise by its
ODCIAggregate interface routines:

CREATE OR REPLACE TYPE ListAggCLImpl AS OBJECT (
 v_out_cl CLOB,
 v_defaultSeparator_tx VARCHAR2(10),
 STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT ListAggCLImpl)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateIterate(self IN OUT ListAggCLImpl,
 value_ot IN listAggParam_ot) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateTerminate(self IN ListAggCLImpl,
 returnValue OUT CLOB, flags IN NUMBER) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateMerge(self IN OUT ListAggCLImpl,
 ctx2 IN ListAggCLImpl) RETURN NUMBER
)

The structure of time definition is the following:

• a number of type attributes to serve as intermediate data storage
• method ODCIAggregateInitialize called once per group to initialize all required settings
• method ODCIAggregateIterate called once for every processed value. The second parameter’s datatype must

match the datatype of the input you are planning to process.
• method ODCIAggregateTerminate is called once at the end of each group. The second parameter’s datatype

should match the expected output of your aggregate function.

www.nyoug.org 212.978.8890 39

• method ODCIAggregateMerge is called in case your aggregate function is running in parallel. It is used to put
together the results of different threads.

The following code is used to create the body of this type:

CREATE OR REPLACE TYPE BODY ListAggCLImpl is
STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT ListAggCLImpl)
RETURN NUMBER IS
BEGIN
 sctx := ListAggCLImpl(null,','); -- default constructor
 RETURN ODCIConst.Success;
END;
MEMBER FUNCTION ODCIAggregateIterate
 (self IN OUT ListAggCLImpl, value_ot IN listAggParam_ot)
RETURN NUMBER IS
BEGIN
 IF self.v_out_cl IS NULL THEN
 self.v_defaultSeparator_tx:=value_ot.separator_tx;
 dbms_lob.createtemporary(self.v_out_cl,true,dbms_lob.call);
 dbms_lob.writeappend
 (self.v_out_cl,length(value_ot.value_tx),value_ot.value_tx);
 ELSE
 dbms_lob.writeappend(self.v_out_cl,
 length(value_ot.separator_tx||value_ot.value_tx),
 value_ot.separator_tx||value_ot.value_tx);
 END IF;
 RETURN ODCIConst.Success;
END;
MEMBER FUNCTION ODCIAggregateTerminate
 (self IN ListAggCLImpl, returnValue OUT CLOB, flags IN NUMBER)
RETURN NUMBER IS
BEGIN
 returnValue := self.v_out_cl;
 RETURN ODCIConst.Success;
END;
MEMBER FUNCTION ODCIAggregateMerge
 (self IN OUT ListAggCLImpl, ctx2 IN ListAggCLImpl)
RETURN NUMBER IS
BEGIN
 IF ctx2.v_out_cl IS NOT NULL THEN
 IF self.v_out_cl IS NULL THEN
 self.v_out_cl:=ctx2.v_out_cl;
 ELSE
 dbms_lob.writeappend(self.v_out_cl,
 length(self.v_defaultSeparator_tx),
 self.v_defaultSeparator_tx);
 dbms_lob.append(self.v_out_cl,ctx2.v_out_cl);
 END IF;
 END IF;
 RETURN ODCIConst.Success;
END;
END;

As you can see, the code is unusual and requires some explanations:

www.nyoug.org 212.978.8890 40

 Method ODCIAggregateInitialize has a default constructor that specifies the initial values of two attributes of
ListAggCLImpl type.

 Method ODCIAggregateIterate via DBMS_LOB APIs adds new values to the existing temporary storage V_OUT_CL
 Method ODCIAggregateTerminate returns the final value of V_OUT_CL as a formal result.
 Method ODCIAggregateMerge is used in case there are parallel executions merging two different V_OUT_CL values

into a single output.

The final step is to define the function itself:

CREATE OR REPLACE FUNCTION ListAggCL (value_ot listAggParam_ot)
RETURN CLOB
PARALLEL_ENABLE
AGGREGATE USING ListAggCLImpl;

The way it is used is no different from any other aggregate function. It also can be used as an analytical function as shown
in the following examples:

SQL> SELECT deptno, ListAggCL(listAggParam_ot(ename,',')) list_cl
 2 FROM emp
 3 GROUP BY deptno;
 DEPTNO LIST_cl
---------- ------------------------------
 10 CLARK,MILLER,KING
 20 SMITH,FORD,ADAMS,SCOTT,JONES
 30 ALLEN,JAMES,TURNER,BLAKE,MARTIN,WARD

SQL> SELECT empno, ename,
 2 ListAggCL(listAggParam_ot(ename,','))
 3 OVER(PARTITION BY deptno ORDER BY ename
 4 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) list_cl
 5 FROM emp
 6 WHERE job = 'CLERK';
 EMPNO ENAME LIST_CL
---------- ---------- --
 7934 MILLER MILLER
 7876 ADAMS ADAMS,SMITH
 7369 SMITH ADAMS,SMITH
 7900 JAMES JAMES

The first example above illustrates the usage of our ListAggCL as a pure aggregate function. All employees of each
department were connected into a comma-separated list. The result is close to what you would expect from a regular built-
in, as long as you are not looking for the sorted list. The real LISTAGG has a special WITHIN GROUP clause that
currently cannot be directly replicated using ODCI interfaces. Of course, it is possible to make ListAggCL sort values by
buffering them into a temporary collection and spinning that collection in ODCIAggregateTerminate. However, for the
problems that the author was trying to solve, that sorting was not critical. Note that in 2004, there were good discussions
on “AskTom” (http://tinyurl.com/AskTom-StrAgg) about different variations of STRAGG and many of these ideas are
still applicable!
The second example shows how the same function could be used as an analytic. It prints out all clerks in the EMP table
together with the comma-separated list of all clerks who work in the same department as in the processed record. This
time, in the OVER clause, you can specify ordering and sort values in the list before putting it together. By default,
analytic functions with the ORDER BY clause use a floating window BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW (the short form of it is RANGE UNBOUNDED PRECEDING), while you usually need the whole
group to be evaluated. For this reason, the second part of the range was replaced with UNBOUNDED FOLLOWING.

www.nyoug.org 212.978.8890 41

User-defined aggregate functions are very handy as long as you understand what is going on. The author has seen a lot of
interesting implementations utilizing the Extensible Framework. There are a significant number of cases when standard
SUM or AVG functions were extended to return 0 instead of NULLs for the empty groups. There was even a system
where people built their own MULT function to multiply all values in the set. This is not a bad idea to have as a standard
built-in!

Managing User-Defined Functions
Historically, the most valuable role of PL/SQL was to provide user-defined functions to do things that could not be done
in SQL (or could be done in SQL, but very inefficiently). Unfortunately, opening SQL to user-defined functions also
opened some new performance-related danger areas. Complete coverage of potential pitfalls in all of the listed areas is
impossible within a single paper, but it will introduce you to the most important ones.

Calling Functions within SQL
For too many database developers, the question of how many times their user-defined PL/SQL function is being called
while processing the SQL statement is a mystery. Very often, a significant cause of performance problems is rooted in this
area because user-defined functions are being called too many times. Each of those calls not only incurs a SQL-to-
PL/SQL-and-back context switch, but also adds to the total cost when functions are called unnecessarily. Of course, there
are special caching mechanisms. But before going to that level of optimization, it is very important to understand what
happens under normal circumstances. For the purposes of performance tuning, it is important to remember the order of
SQL statement execution:

1. JOIN
2. WHERE
3. GROUP BY
4. SELECT (including analytics functions)
5. HAVING
6. ORDER BY

The reason to consider the order is that you can eliminate some calls by applying conditions earlier in the process. It is
very important to keep the list above in your head any time you are trying to analyze SQL statement internal logic.

Single Table Problems
Before discussing multi-table joins, you should first understand single-table activities that will make the whole analysis
process much simpler. To illustrate different cases, create the following testing environment with a package to store a
function counter and a testing procedure:

CREATE OR REPLACE PACKAGE counter_pkg IS
 v_nr NUMBER:=0;
 PROCEDURE p_check;
END;
CREATE OR REPLACE PACKAGE BODY counter_pkg IS
 PROCEDURE p_check is
 BEGIN
 dbms_output.put_line('Fired:'||counter_pkg.v_nr);
 counter_pkg.v_nr:=0;
 END;
END;
CREATE OR REPLACE FUNCTION f_change_nr (i_nr NUMBER) RETURN NUMBER IS

www.nyoug.org 212.978.8890 42

BEGIN
 counter_pkg.v_nr:=counter_pkg.v_nr+1;
 return return i_nr*(-1);;
END;

It is very difficult to create an exhaustive test of all possible permutations. For the purposes of this paper, the most
important or counter-intuitive ones were selected.
Keep in mind that the same function put in different places within a SQL statement may not produce the same results. By
default, in Oracle all of those calls are different as shown here:

SQL> SELECT empno, ename, f_change_nr(empno) change_nr
 2 FROM emp
 3 WHERE f_change_nr(empno) IS NOT NULL
 4 AND deptno = 20;
...
5 rows selected.

SQL> exec counter_pkg.p_check;
Fired:10

The example above demonstrates the following:
 The CBO tries to order predicates to decrease the total cost of the query. As a result, DEPTNO=20 was applied before

F_CHANGE_NR(EMPNO) IS NOT NULL. This means that the second condition was checked for only 5 rows. It
also means that it is very important to keep table statistics up to date, have proper indexes, and constraints etc. to help
the CBO make the right ordering choices.

 The same functions in SELECT and WHERE clauses are being fired independently and cannot be reused (unless the
results are cached in some way. That’s why the total number of calls equals 10.

Overall, every time you fire a function anywhere, it requires a separate call. Even worse, sometimes might need multiple
calls, depending upon how Oracle rewrites your code:

SQL> SELECT empno, ename, f_change_nr(empno) change_nr
 2 FROM emp
 3 WHERE deptno = 20
 4 ORDER BY 3;
5 rows selected.
...

SQL> exec counter_pkg.p_check;
Fired:5

SQL> SELECT empno, change_nr
 2 FROM (
 3 SELECT empno, ename, f_change_nr(empno) change
 4 FROM emp
 5 WHERE deptno = 20
 6 ORDER BY 3
 7);
...
5 rows selected.
SQL> exec counter_pkg.p_check;
Fired:10

www.nyoug.org 212.978.8890 43

The two examples above differ only in that, in the second case, the main query was wrapped as an in-line view.
Surprisingly, the second time the function F_CHANGE_NR was fired two times more, namely 10 instead of 5. If you
generate 10053 trace (CBO), you will find that the following query was executed:

Final query after transformations:******* UNPARSED QUERY IS *******
SELECT "EMP"."EMPNO" "EMPNO","EMP"."ENAME" "ENAME",
 "SCOTT"."F_CHANGE_NR"("EMP"."EMPNO") "CHANGE_NR"
FROM "SCOTT"."EMP" "EMP"
WHERE "EMP"."DEPTNO"=20
ORDER BY "SCOTT"."F_CHANGE_NR"("EMP"."EMPNO")

The query seems suspicious because of two separate calls to F_CHANGE_NR (instead of referencing column position),
but if you run that query directly, you will still get 5 executions. Something does not add up. After more digging into the
10053 trace, it is clear that the catch can be found elsewhere. Oracle has an internal CBO optimization feature called
“ORDER BY elimination” (OBYE) that cuts unnecessary work from the ORDER BY. Unfortunately, it happens before
the query transformation, so when the CBO evaluates the original call, it does not find anything to optimize in the root
SELECT statement:

Order-by elimination (OBYE)

OBYE: OBYE performed.
OBYE: OBYE bypassed: no order by to eliminate.

This is why after the transformation, the ORDER BY clause suddenly appears. It is not eliminated and you end up with
double the number of function calls. Interestingly enough, adding a /*+ NO_MERGE */ hint to the in-line view makes the
double-fire problem disappear. It tells the CBO to keep in-line views instead of merging them with the main query.
Although, remember that a hint is just a suggestion, and not a directive. There are known cases when the CBO transforms
predicates and /*+ NO_MERGE */ could be ignored.

SQL> SELECT empno, change_nr
 2 FROM (
 3 SELECT /*+ NO_MERGE */empno, ename, f_change_nr(empno) change_nr
 4 FROM emp
 5 WHERE deptno = 20
 6 ORDER BY 3
 7);
5 rows selected.
...

SQL> exec counter_pkg.p_check;
Fired:5

Let’s take this example one step further and replace the in-line view with the real view. The chances are very good that the
double-fire behavior will persist:

SQL> CREATE OR REPLACE VIEW v_emp AS
 2 SELECT empno, ename, f_change_nr(empno) change_nr
 3 FROM emp
 4 WHERE deptno = 20
 5 ORDER BY 3;
View created.

SQL> SELECT empno, change_nr

www.nyoug.org 212.978.8890 44

 2 FROM v_emp;
...
5 rows selected.

SQL> exec counter_pkg.p_check;
Fired:10

This is a real issue! In a lot of production systems, the author has often seen views with ORDER BY clauses referencing
view columns created with PL/SQL functions. In turn, these views were used as parts of other more complex views. The
result above demonstrates that such a coding style is a very bad idea because it could lead to doubling of the overhead
incurred by firing those functions. More importantly, that overhead could just suddenly arise when the execution plan
changes because of data growth or other reasons. In general, the ORDER BY clause should be applied at the highest level
whenever possible. The lesson to be learned here is that even with a one-table query, PL/SQL functions can impact
performance significantly, especially if used in multiple places. Be careful!

Multi-Table Problems
When PL/SQL functions are being called in multi-table joins, it is very important to keep in mind that you are operating
on the merged sets. Here is a basic example:

SQL> SELECT empno, f_change_nr(empno) change_nr, dname
 2 FROM emp,
 3 dept
 4 WHERE emp.deptno(+) = dept.deptno;
 EMPNO CHANGE_NR DNAME
 7782 7782 ACCOUNTING
 ...
 7654 7654 SALES
 OPERATIONS
15 rows selected.

SQL> exec counter_pkg.p_check;
Fired:15

Note the outer join between EMP and DEPT. This causes the query to return 15 rows: 14 from EMP plus one DEPT that
does not have any employees. The function F_CHANGE_NR is also fired 15 times because it is being applied after the
join. As a result, 1 out of 15 calls is unnecessary. The same 15 executions will occur even if you pass a column from the
DEPT table into the function. This leads to even worse overhead because you have only four distinct departments.
Anything with more than four calls is a waste of resources (11 extra calls!):

SQL> SELECT empno, f_change_nr(dept.deptno) change_nr, dname
 2 FROM emp,
 3 dept
 4 WHERE emp.deptno(+) = dept.deptno;
 ...
15 rows selected.

SQL> exec counter_pkg.p_check;
Fired:15

The last example illustrates the most common mistake of using PL/SQL functions inside of SQL. If developers pass a
column from the small table used in the join, they expect the total number of calls to this function to be relatively small.
This is a mistake; however, there are special techniques to make Oracle aware that the total number of calls could be
decreased. The majority of these techniques deal with caching and are described later in the paper.

www.nyoug.org 212.978.8890 45

Cost Management Using Oracle 12c-Only Features
As of this writing, Oracle 12c is very new. It was released only a couple of months ago. Understandably, this version does
not have as much deep analysis available as Oracle 11g, but there are already some interesting features.

PRAGMA UDF
Oracle 11g introduced a special PL/SQL optimization level #3, where PL/SQL program units were “in-lined” into their
callers. Starting with Oracle 12c, a similar “in-lining” notion could be applied to user-defined functions that are primarily
called in SQL. The change is made by specifying the PRAGMA UDF clause in the function declaration. That clause tells
Oracle to compile a PL/SQL function to make its usage by the SQL engine more efficient. On the other hand, it will
somewhat slow down the same function in the context of PL/SQL, so do not rush to add that PRAGMA UDF clause
everywhere. However, it really speeds up functions in SQL, as demonstrated by the following example.
To be able to see measurable performance changes, you need a table with enough rows. You also need an alternative to
the function F_CHANGE_NR that would have PRAGMA UDF clause as shown here:

CREATE TABLE test_tab AS
SELECT *
FROM all_objects
WHERE ROWNUM <= 50000;

CREATE OR REPLACE FUNCTION f_change_udf_nr (i_nr NUMBER) RETURN NUMBER
IS
 PRAGMA UDF;
BEGIN
 counter_pkg.v_nr:=counter_pkg.v_nr+1;
 RETURN i_nr+1;
END;
The comparison is very simple – both functions will be executed 50000 times:
SQL> SELECT MAX(f_change_nr(object_id))
 2 FROM TEST_TAB;
MAX(F_CHANGE_NR(OBJECT_ID))

 51485
Elapsed: 00:00:00.48
SQL> SELECT MAX(f_change_udf_nr(object_id))
 2 FROM TEST_TAB;
MAX(F_CHANGE_UDF_NR(OBJECT_ID))

 51485
Elapsed: 00:00:00.06

The difference in performance between two functions is definitely impressive: 0.48 seconds vs. 0.06! If you check 10046
trace, the time saving is associated with CPU time, so it is all about context switches. Of course, this is relevant for a very
large number of iterations, but if you have a large number of light functions (for example, returning global variables or
constants) that are being called thousands of times, the gain could be significant. There is also a counter-example when
PRAGMA UDF causes performance degradation:

SQL> DECLARE
 2 v_out_nr NUMBER;
 3 BEGIN
 4 FOR i IN 1..1000000 loop
 5 v_out_nr:=f_change_nr(i)+f_change_nr(i+1);
 6 END LOOP;

www.nyoug.org 212.978.8890 46

 7 END;
 8 /
Elapsed: 00:00:01.39

SQL> DECLARE
 2 v_out_nr NUMBER;
 3 BEGIN
 4 FOR i IN 1..1000000 LOOP
 5 v_out_nr:=f_change_udf_nr(i)+f_change_udf_nr(i+1);
 6 END LOOP;
 7 END;
 8 /
Elapsed: 00:00:01.89

This time, including PRAGMA UDF caused the loss of 0.4 seconds for 2 million iterations. Although this is not a lot of
extra time, it is important to balance SQL gains with PL/SQL losses if the same function is being used in two contexts.
Overall, this feature shows very good potential, but it is new and may require additional testing.

Functions Inside the WITH Clause
The last few versions of the Oracle Database have consistently extended the functionality of the WITH clause. Oracle 12c
includes the possibility of adding user-defined functions and procedures directly to the SQL statement, instead of creating
them as separate objects:

SQL> WITH FUNCTION f_changeWith_nr (i_nr number) RETURN NUMBER IS
 2 BEGIN
 3 RETURN i_nr+1;|
 4 END;
 5 SELECT max(f_changeWith_nr(object_id))
 6 FROM test_tab
 7 /
MAX(F_CHANGEWITH_NR(OBJECT_ID))

 51485
Elapsed: 00:00:00.07

The goal of this approach is to decrease the number of context switches between SQL and PL/SQL, and it does up to a
point. As of the initial release of Oracle 12c, there are some drawbacks:
 Coding fragmentation: The whole reason for using stored procedures is to have a single point of functionality. If you

allow developers to create user-defined functions directly inside SQL statements, you may significantly complicate
the whole code maintenance process.

 PL/SQL limitations: PL/SQL does not currently support SQL statements having functions in the WITH clause at all.
Although the same call wrapped in Dynamic SQL will work just fine, this is a significant inconvenience.

 SQL limitations: If you like to use the WITH-clause with functions anywhere other than the top level query, you need
to include a special hint /*+ WITH_PLSQL */ on that top level.

 Optimization limitations: The DETERMINISTIC clause is being ignored for WITH-clause functions. As a result, they
may be even cheaper than standalone ones that could be fired much more often.

 Performance: Much to the surprise of a lot of Oracle 12c early adopters, adding the PRAGMA UDF clause to regular
functions consistently outruns WITH-clause functions (see example above – 0.06 instead of 0.07), but not by a lot,
compared with the original costs, although it does so very consistently.

www.nyoug.org 212.978.8890 47

The ink is still not dry on using functions inside the WITH clause functionality. It is worthwhile knowing that it exists, but
unless something changes in later releases, its usability is somewhat questionable, especially when compared to the
PRAGMA UDF alternative.

Introduction to Different Caching Techniques
There is a very interesting question about user-defined functions: Why do you need to do something that can be done once
and preserved for future use multiple times? The answer to this question is “You don’t!” Oracle contains a number of
different caching techniques, each with own strengths and weaknesses. It would take hundreds of pages to cover them in
detail. For the purposes, of this paper, only a brief introduction is included.

Deterministic Functions
If a user-defined function always does exactly the same thing for the specified input (both in terms of output and in terms
of database activities), it can be defined with the special keyword DETERMINISTIC. Technically, this is also an internal
caching technique because it lets Oracle reuse already known results for performance optimization purposes.
Unfortunately, this clause is often misused, because Oracle does not have a way of checking whether your function is
indeed deterministic. Although the following example violates the rules of the DETERMINISTIC clause, because you
will be changing the packaged variable, it can serve as a good illustration of the effect of this clause:

-- basic function
CREATE OR REPLACE FUNCTION f_change_tx (i_tx VARCHAR2) RETURN VARCHAR2 IS
BEGIN
 counter_pkg.v_nr:=counter_pkg.v_nr+1;
 return lower(i_tx);
END;

-- optimized function
CREATE OR REPLACE FUNCTION f_change_det_tx (i_tx VARCHAR2) RETURN VARCHAR2
DETERMINISTIC
IS
BEGIN
 counter_pkg.v_nr:=counter_pkg.v_nr+1;
 RETURN lower(i_tx);
END;

This function will be applied to the column EMP.JOB that contains only five distinct values: PRESIDENT, MANAGER,
CLERK, ANALYST, and SALESMAN.

SQL> SELECT empno, f_change_tx(job) FROM emp;
...

SQL> exec counter_pkg.p_check;
Fired:14

SQL> SELECT empno, f_change_det_tx(job) FROM emp;
...

SQL> exec counter_pkg.p_check;
Fired:5

In this case, the DETERMINISTIC function was called only five times, but it is important to remember that the
DETERMINISTIC clause is a hint, and not a directive. Oracle can ignore it for reasons that may or may not be clear. This

www.nyoug.org 212.978.8890 48

unpredictability is sometimes the reason why developers prefer to stay away from this feature, even when the system
could benefit from it.
It is important to mention that Oracle preserves the results of the deterministic function in the cache only for the duration
of the current fetch operation and not for the duration of the entire query. Therefore, the total number of fetch operations
could also impact the benefits realized from using this feature.
To examine the DETERMINISTIC clause in more detail, more data is needed. Table TEST_TAB, created in earlier in this
paper as the first 50,000 rows from ALL_OBJECTS, is a good test set, especially if a few more columns are added. A
special type STRINGLIST_TT will be required to obtain relevant results:

ALTER TABLE test_tab ADD
 (obj3_tx VARCHAR2(3),
 obj1_tx VARCHAR2(1));

UPDATE test_tab SET
 obj3_tx = UPPER(SUBSTR(object_name,-3)), -- 3442 distinct values
 obj1_tx = UPPER(SUBSTR(object_name,1,1)); -- 26 distinct values

CREATE TYPE stringList_tt IS TABLE OF VARCHAR2(256);

Now, by using the FETCH…BULK COLLECT LIMIT syntax, is it possible to check the impact of the
DETERMINISTIC clause on the total execution count. This example also compares the total number of function calls
with the number of distinct values in each fetch:

SQL> DECLARE
 2 v_obj_tt stringList_tt ;
 3 v_count_nr NUMBER;
 4 CURSOR c_rec is
 5 SELECT f_change_det_tx(obj1_tx) obj_tx
 6 FROM test_tab;
 7 BEGIN
 8 OPEN c_rec;
 9 FOR i IN 1..5 LOOP
 10 FETCH c_rec BULK COLLECT INTO v_obj_tt LIMIT 100;
 11 SELECT COUNT(DISTINCT column_value)
 12 INTO v_count_nr
 13 FROM TABLE(CAST (v_obj_tt AS stringList_tt));
 14 counter_pkg.p_check;
 15 dbms_output.put_line('-real count:'||v_count_nr);
 16 END LOOP;
 17 CLOSE c_REC;
 18 END;
 19 /
Fired:17
-real count:14

Fired:22
-real count:14

Fired:26
-real count:16

Fired:25
-real count:14

Fired:17

www.nyoug.org 212.978.8890 49

-real count:15

The results are mixed. The DETERMINISTIC clause did indeed reduce the total number of function calls from 200 to
much lower numbers. However, it still fired more often than the distinct number of values in each fetch operation. The
explanation for the last part is clear when you understand exactly how the DETERMINISTIC clause works. For the
duration of the call, Oracle creates a hash table that stores the results of your function together with its corresponding IN-
parameters, where hash-values of IN-parameters work as keys. By default, this hash table is of limited size (65536 bytes)
and may be filled very quickly. As a result, after the hash table is full, extra IN/OUT combinations are ignored. The good
news is that the size of this table can be changed. The bad news is that it is an “underscore” parameter, which means that
you should not touch it unless told to do so by Oracle Support. For the sake of this discussion, let’s multiply it by four and
see what happens with the test:

SQL> ALTER SESSION SET "_query_execution_cache_max_size"=262144;

SQL> ... rerun the example from above …
Fired:17
-real count:14

Fired:16 [was 22]
-real count:14

Fired:18 [was 26]
-real count:16

Fired:24 [was 25]
-real count:14

Fired:17
-real count:15

The total number of function calls dropped significantly, not to the exact match, but enough to be aware of this tuning
technique. It is important to note, that even if your IN-parameters are distinct, this does not mean that their Oracle hash-
values are also distinct. It was proven that it is possible to get hash collisions in the memory table (the hash table). Such
collisions also cause Oracle to ignore the DETERMINISTIC clause Overall, the DETERMINISTIC clause can be very
useful, but only if you properly understand the data sets that are being processed.

Scalar Sub-Query Caching
Oracle introduced scalar sub-query caching a long time ago as a part of its internal SQL optimization mechanism. By
definition, scalar sub-queries return a single column of a single row (or from the empty rowset), while caching in this
context means that Oracle intermittently stores the results of such queries while processing more complex ones.
Currently, this built-in feature is less well known than it should be and even less well understood. Unfortunately, there are
good reasons for its lack of use and understanding since the feature is somewhat counter-intuitive from a PL/SQL
developer’s point of view. In order to apply it to user-defined functions, your code must be changed as shown here:

SQL> SELECT empno, f_change_tx(job) FROM emp;
...

SQL> exec counter_pkg.p_check;
Fired:14

SQL> SELECT empno, (SELECT f_change_tx(job) FROM dual) FROM emp;
...

www.nyoug.org 212.978.8890 50

SQL> exec counter_pkg.p_check;
Fired:5

Surprisingly enough, wrapping a function call into SELECT…FROM DUAL cuts the total number of calls from 14 (as
the number of rows) to 5 (as the number of distinct values). The power of this technique is that it not only reuses existing
data, but also drops the total number of SQL-to-PL/SQL context switches by internally managing results produced by
user-defined functions.
Scalar sub-query caching looks a lot like the DETERMINISTIC clause: Oracle maintains a special memory-based hash
table with cached values. It is even internally driven by the same "_query_execution_cache_max_size". However, there
are some differences. First, the scope of the scalar sub-query caching is a query, not a fetch:

SQL> DECLARE
 2 v_obj_tt stringList_tt;
 3 v_count_nr NUMBER;
 4 CURSOR c_rec IS
 5 SELECT (SELECT f_change_tx(obj1_tx) FROM DUAL) obj_tx
 6 FROM test_tab;
 7 BEGIN
 8 OPEN c_rec;
 9 FOR i IN 1..5 LOOP
 10 FETCH c_rec BULK COLLECT INTO v_obj_tt LIMIT 100;
 11 SELECT COUNT(DISTINCT column_value)
 12 INTO v_count_nr FROM TABLE(CAST (v_obj_tt as stringList_tt));
 13 counter_pkg.p_check;
 14 dbms_output.put_line('-real count:'||v_count_nr);
 15 END LOOP;
 16 CLOSE c_rec;
 17 END;
 18 /
Fired:17
-real count:14

Fired:16
-real count:14

Fired:10
-real count:16

Fired:18
-real count:14

Fired:5
-real count:15

As you can see, in some fetches the total number of function calls is less than the number of distinct values. This happens
because Oracle can reuse already calculated values from the previous fetch.
The second difference is a bit obscure. It has to do with what happens after the hash table is full. The DETERMINISTIC
clause stops accepting new values, but scalar sub-query caching keeps the hash table plus one extra slot. That extra slot is
being overwritten each time a new value comes in, but until then, it is preserved by Oracle. This means that if your dataset
is ordered, scalar sub-query caching could benefit you even if you have a large number of distinct values in every fetch:

SQL> DECLARE
 2 v_obj_tt stringList_tt;

www.nyoug.org 212.978.8890 51

 3 v_count_nr NUMBER;
 4 CURSOR c_rec IS
 5 SELECT (SELECT f_change_tx(obj3_tx) FROM dual) obj_tx
 6 FROM (SELECT /*+ NO_MERGE */ * FROM test_tab ORDER BY obj3_tx);
 7 BEGIN
 8 OPEN c_rec;
 9 FOR i IN 1..5 LOOP
 10 FETCH c_rec BULK COLLECT INTO v_obj_tt LIMIT 1000;
 11 SELECT COUNT(DISTINCT column_value)
 12 INTO v_count_nr FROM TABLE(CAST (v_obj_tt AS stringList_tt));
 13 counter_pkg.p_check;
 14 dbms_output.put_line('-real count:'||v_count_nr);
 15 END LOOP;
 16 CLOSE c_rec;
 17 END;
 18 /
Fired:160
-real count:160
Fired:268
-real count:268
Fired:56
-real count:57
Fired:62
-real count:63
Fired:22
-real count:23

Since the result set is ordered, for every fetch, the total number of function calls would be equal to or one less than the
number of distinct values in the set (one less could happen if the same value spawns multiple fetches).
In general, scalar sub-query caching is a very interesting technique that developers should know about. Its greatest benefit
is that it can drastically decrease the number of context switches between SQL and PL/SQL and does not require any
changes to underlying functions, only adjustments to SQL queries.

PL/SQL Function Result Cache
The query-level caching techniques shown above are very powerful, but in real life, the same PL/SQL functions could be
called multiple times in the same session from different queries. Taking it one step farther, your function could return the
same results for the same IN for any session. Overall, those two issues could be summarized to the need to have results of
PL/SQL functions be reused as widely as possible, irrelevant of fetches, calls, and even sessions. Starting with Oracle 11g,
this can be resolved using a new feature called the PL/SQL Function Result Cache, which covers all of the cases
described.

Result Cache Basics
From the developer’s point of view, enabling this feature is very simple, involving just one extra clause. However, from
the administrative side, there are many hidden activities as shown later. The result-cache-enabled function looks as
follows:

CREATE OR REPLACE FUNCTION f_getDept_dsp (i_deptno NUMBER) RETURN VARCHAR2
RESULT_CACHE
IS
 v_out_tx VARCHAR2(256);
BEGIN
 IF i_deptno IS NULL THEN RETURN NULL; END IF;

www.nyoug.org 212.978.8890 52

 SELECT initcap(dname) INTO v_out_tx
 FROM dept WHERE deptno=i_deptno;
 counter_pkg.v_nr:=counter_pkg.v_nr+1;
 RETURN v_out_tx;
END;

Adding the RESULT_CACHE clause seems very simple, but it completely changed the behavior of this simple function:

SQL> SELECT empno, f_getDept_dsp(deptno) dept_dsp FROM emp;
 EMPNO DEPT_DSP
----------- ------------------------
 7369 Research
 ...
14 rows selected.

SQL> exec counter_pkg.p_check;
Fired:3

SQL> SELECT empno, f_getDept_dsp(deptno) dept_dsp FROM emp;
 EMPNO DEPT_DSP
---------- ----------
 7369 Research
 ...
14 rows selected.

SQL> exec counter_pkg.p_check;
Fired:0

In this example, the same function was fired in two different queries against the EMP table that references three
departments. The first time, the total number of function calls was three (matching query-level caching), but for the
second query, there were no function calls. Obviously, the information must have come from somewhere. This time it
came from the PL/SQL Function Result Cache.
Contrary to previously described techniques, the PL/SQL Result Cache has a set of fully documented and published
information access methods. They consist of dynamic data dictionary views and a special API in the
DBMS_RESULT_CACHE. This API gets you the summary while views let you dig in to the details. From a high-level
database management overview, the internal information about the result cache is as follows:

SQL> exec dbms_result_cache.memory_report;
R e s u l t C a c h e M e m o r y R e p o r t
[Parameters]
Block Size = 1K bytes
Maximum Cache Size = 15M bytes (15K blocks)
Maximum Result Size = 768K bytes (768 blocks)
[Memory]
Total Memory = 166200 bytes [0.012% of the Shared Pool]
... Fixed Memory = 5352 bytes [0.000% of the Shared Pool]
... Dynamic Memory = 160848 bytes [0.011% of the Shared Pool]
....... Overhead = 128080 bytes
....... Cache Memory = 32K bytes (32 blocks)
........... Unused Memory = 27 blocks
........... Used Memory = 5 blocks
............... Dependencies = 2 blocks (2 count)
............... Results = 3 blocks
................... PLSQL = 3 blocks (3 count)

www.nyoug.org 212.978.8890 53

SQL> SELECT * FROM v$result_cache_statistics;
 ID NAME VALUE
----- ------------------------------ ----------
 1 Block Size (Bytes) 1024
 2 Block Count Maximum 15360
 3 Block Count Current 32
 4 Result Size Maximum (Blocks) 768
 5 Create Count Success 3
 6 Create Count Failure 0
 7 Find Count 25
 8 Invalidation Count 0
 9 Delete Count Invalid 0
 10 Delete Count Valid 0
 11 Hash Chain Length 1
 12 Find Copy Count 25

Both the summary and the view show how much memory is being consumed from the limit allocated by your DBA
(managed by the “result_cache_max_result” parameter). But the view also shows that for all result cache-enabled
functions, there was a total of 25+3, or 28 requests, out of which only 3 were distinct and 25 were reused.
The view also shows that all cache results are valid. This is a very important point to understand. Starting with Oracle 11g
Release 2 onward for each occurrence of caching, Oracle gathers the names of all tables that were touched while the
function was executed (in Oracle 11g Release 1 you needed to explicitly use the RELIES ON clause). This does not
include packages or the session context, but only tables. This means that you should not enable RESULT_CACHE on
functions that depend on such session-level resources, because Oracle would not be able to detect its changes. You can see
what objects are of interest for the result cache by running the following query:

SQL> SELECT id, type, status, name FROM V$RESULT_CACHE_OBJECTS;
 ID TYPE STATUS NAME
----- ---------- --------- ------------------------------
 0 Dependency Published SCOTT.F_GETDEPT_DSP
 1 Result Published "SCOTT"."F_GETDEPT_DSP"::8."F_GETDEPT_DSP"
 #762ba075453b8b0d#1
 2 Dependency Published SCOTT.DEPT
 3 Result Published "SCOTT"."F_GETDEPT_DSP"::8."F_GETDEPT_DSP"
 #762ba075453b8b0d#1
 4 Result Published "SCOTT"."F_GETDEPT_DSP"::8."F_GETDEPT_DSP"
 #762ba075453b8b0d#1

Using the results of this query, you can clearly see that Oracle is aware of three cached values (type=Result). To maintain
the existing cache intact, Oracle needs to monitor two objects (type=Dependency): function SCOTT.F_GETDEPT_DSP
and table SCOTT.DEPT. This view does not show you which cached results depend upon which monitored objects, but
the following query allows you to answer this question too:

SQL> SELECT rco.id, rco.name, ao.owner||'.'||ao.object_name object_name
 2 FROM v$result_cache_objects rco,
 3 v$result_cache_dependency rcd,
 4 all_objects ao
 5 WHERE rco.id = rcd.result_id
 6 AND rcd.object_no = ao.object_id
 7 order by 1;
 ID NAME OBJECT_NAME
----- --- -----------------
 1 "SCOTT"."F_GETDEPT_DSP"::8."F_ GETDEPT_DSP" SCOTT.DEPT

www.nyoug.org 212.978.8890 54

 1 "SCOTT"."F_GETDEPT_DSP"::8.”F_ GETDEPT_DSP" SCOTT.F_GETDEPT_DSP
 3 "SCOTT"."F_GETDEPT_DSP"::8."F_ GETDEPT_DSP" SCOTT.DEPT
 3 "SCOTT"."F_GETDEPT_DSP"::8.”F_ GETDEPT_DSP" SCOTT.F_GETDEPT_DSP
 4 "SCOTT"."F_GETDEPT_DSP"::8."F_ GETDEPT_DSP" SCOTT.DEPT
 4 "SCOTT"."F_GETDEPT_DSP"::8.”F_ GETDEPT_DSP" SCOTT.F_GETDEPT_DSP

The query shows clearly that all three cache entries depend upon both elements. It is important to clarify what this
“dependency” really means. In terms of tables, the explanation is very simple. Any INSERT/UPDATE/DELETE or DDL
against the table would invalidate the cache, even if there were no change to the data. The function F_GETDEPT_DSP is
also in the monitoring list because Oracle needs to handle the case when it is recompiled and the underlying logic has
been modified. In this case, Oracle does not check to determine whether or not code changes are significant or even
whether they exist at all. If the timestamp is different, the cache is gone.
Keeping data consistency in the result cache is a very challenging task. That is why there are some restrictions to take into
account. As of Oracle 12c, in order for the function to be cached, the following conditions should be met:

1. The function is not defined in the anonymous block and is not pipelined.
2. The function does not have OUT or IN/OUT parameters. IN-parameters cannot be LOBs, REF CURSOR, objects,

collections or records. Returning values cannot be LOBs, REF CURSORS, or objects. Records and collections are
supported if they do not contain previously listed types.

3. References cannot include dictionary tables, temporary tables, sequences, or non-deterministic SQL functions (for
example, CURRENT_DATE, SYSDATE, and so on).

Impact of the PL/SQL Result Cache
Keep in mind that the PL/SQL function Result Cache is implemented in such a way that both SQL and PL/SQL code
could benefit from it. If you use your functions inside of a SQL statement, there will first be a context switch between
SQL and PL/SQL. Only afterwards will Oracle retrieve cached values. On the other hand, the DETERMINISTIC clause
and sub-query result cache eliminate the context switch altogether as illustrated with another variation of the
F_CHANGE_TX function:

CREATE OR REPLACE FUNCTION f_change_cache_tx (i_tx varchar2) RETURN VARCHAR2
RESULT_CACHE IS
BEGIN
 counter_pkg.v_nr:=counter_pkg.v_nr+1;
 RETURN LOWER(i_tx);
END;

Now let’s check this function against the DETERMINISTIC clause:

SQL> exec runstats_pkg.rs_start
SQL> SELECT MAX(f_change_cache_tx(obj1_tx)) FROM test_tab;
MAX(F_CHANGE_CACHE_TX(OBJ1_TX))
--
x
SQL> exec counter_pkg.p_check;
Fired:26
SQL> exec runstats_pkg.rs_middle
SQL> SELECT MAX(f_change_det_tx(obj1_tx)) FROM test_tab;
MAX(F_CHANGE_DET_TX(OBJ1_TX))
--
x
SQL> exec counter_pkg.p_check;

www.nyoug.org 212.978.8890 55

Fired:7627
SQL> exec runstats_pkg.rs_stop
Run1 ran in 65 cpu hsecs
Run2 ran in 16 cpu hsecs
run 1 ran in 406.25% of the time
Name Run1 Run2 Diff
STAT...CPU used by this session 64 16 -48
LATCH.Result Cache: RC Latch 50,079 0 -50,079
Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
52,388 2,057 -50,331 2,546.82%

The results are confusing if you only look at the function count and the clock. Even so, the function was fired 26 times vs.
7627 times. It took four times longer to get exactly the same result. The truth is that to operate with a result cache, Oracle
uses a lot of latches, which are known to be CPU-intense. This means that the RESULT_CACHE does not scale to a very
high number of simultaneous sessions. Although, if your cached functions are not as light as in the example above, fired
less frequently, and contain many more I/O operations, the benefits of the result cache will outweigh the expenditure of
extra latches. You can find many details about RESULT_CACHE scalability in the series of blog posts written by Alex
Fatkulin (http://afatkulin.blogspot.com).
Overall, PL/SQL Result Cache is a very powerful mechanism, but it has many associated costs, both in terms of memory
and CPU. For this reason, despite its benefits, it should only be deployed to a production environment under very tight
controls and only after proper testing, especially from a scalability point of view.

Summary
Understanding how SQL and PL/SQL work together is critical for good database system development. The conceptual
differences between these languages are large, but they complement each other in a way that is unique in the industry.
SQL does the "heavy lifting" of data retrieval while PL/SQL handles the procedural logic. Together, they form the
backbone of good database-centric development. SQL continues to expand its capabilities. It can do more and more that
used to only be possible using PL/SQL. However, PL/SQL still allows you to do things that could not be done well or at
all in SQL. The trick is knowing when and why to use each language to leverage its strengths and maintain good system
performance and functionality.

About the Author
Michael Rosenblum is a Software Architect/Senior DBA at Dulcian, Inc. where he is responsible for system tuning and
application architecture. Michael supports Dulcian developers by writing complex PL/SQL routines and researching new
features. He is the co-author of PL/SQL for Dummies (Wiley Press, 2006), contributing author of Expert PL/SQL
Practices (APress, 2011), and author of a number of database-related articles (IOUG Select Journal, ODTUG Tech
Journal) and conference papers. Michael is an Oracle ACE, a frequent presenter at various Oracle user group conferences
(Oracle OpenWorld, ODTUG, IOUG Collaborate, RMOUG, NYOUG, etc), and winner of the ODTUG Kaleidoscope
2009 Best Speaker Award. In his native Ukraine, he graduated summa cum laude from the Kiev National Economic
University where he received a Master of Science degree in Information Systems.

Nothing hunts down Oracle
performance issues like Confio Ignite™.

Over 50% of DBAs who try Ignite resolve a
performance problem on the first day.

Start your free trial at Confio.com/p-hog

© 2012 Confio Software, Boulder, Colorado. (303) 938-8282

www.nyoug.org 212.978.8890 57

NYOUG 2014 Sponsors

The New York Oracle Users Group wishes to thank the following companies
for their generous support.

Oracle (www.oracle.com)

Contact Caryl Lee Fisher for vendor information, sponsorship, and benef

Copyright © 2009, Oracle. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

oracle.com/goto/middleware
or call 1.800.ORACLE.1

#1
Middleware

 #1 in Application Servers

 #1 in Application Infrastructure Suites

 #1 in Enterprise Performance Management

PRODUCTION NOTESJob No.:
File Name:

Product:
Headline:

Date:
Pub:

Traffic:
Library Ref.:

Fri, Nov. 20, 2009 11:15 AM

MdW_1MdW_3cks_2271_NYOUG

002271
CUSTOM

8” x 10.75”
New York Oracle

Users Group

PUB NOTE: Please use center marks to align page.

Please examine these publication materials carefully. Any questions regarding the materials, please contact Darci Terlizzi (650) 506-9775

Middleware

APPROVALS

Traffic

Production

Proofing

Graphic Mgr.

Adv. Mgr.

Buddy Check

BY DATE

#1 Middleware

NYOUG
HQ

7” x 10”
8” x 10.75”
8.25” x 11”
4C

Live:
Trim:

Bleed:
Color:

Production:

READER

01
LASER%

RELEASED
002223

Fonts:
Univers LT Std. Font Family

