Oracle Insert Statements

for DBAs and Developers

Official Eata Site

Daniel A. Morgan ORACLE

i e

OfRACLE

RAC

a QOracle ACE Director

-] . Integ':f-:t_iﬂnal
Consultant to Harvard University Oracle SIG
Tﬂ'- University of Washington Oracle Instructor, ret.

< The Morgan of Morgan’s Library on the web
www.morganslibrary.org/library.html

= Executive Board Member: Vancouver OUG

= Upcoming Presentations & Events

= September: Oracle OpenWorld
= Qctober: Croatia Oracle Users Group
= Qctober: Slovenian Oracle Users Group

= November APAC Tour:
Thailand & New Zealand

= 10g, 11g, & 12c Beta Tester

The Legend of Mad Dog Morgan?

. 1**Violent escapist
0 ||_ entertainment.””

ﬁ ‘“DENNIS HOPPER'S
performance as Dan
Morgan is a tour de

force. . .it"s powerful.

LIETY

e

|
=
E

Morgan’s Library: www.morganslibrary.org

- |] e
Morgan®“s Library —T—

International Oracle Events 2013-2014 Calendar
How Dec Jdan Feb Mar Apr May Jun dul Aug Sep
The library is a spam-free on-line resource with code demos for DBAs and Developers.

If you would like to see Oracle database funtionality added to the library ... just email us.
Oracle 12.1.0.1.0 has been released and content will start showing up every day for weeks.

2

Oracle Events

Homes MadDog Morgan Training Events and Travels

s Bl N70UG. Auckland, New Zealand - 08 Now
Resources —
Libeary ® L AIOUG, Hyderabad. India - 8 - 9 Now
% s il AUSOUG, Perth, Australia - 12-13 Now
s » [*] 10UG, Tokyo. Japan - 13-15 Nov OraclelZ AR
Links o [l acouG, Beijing, China - 16-19 Now ra;:nﬁ'h' ! ,Hm
Book Revisws LIvima Foar L0 S
e » Bl AcOUG, Guangzou, China - 19 Now L rer e
Lisal GIoups L] -II!-DAG. Hurnburg, Germany - 19-21 Now
Biog
Huamer = =
Next Event: APAC New Zealand Click on the logo to find out more
General

- ACE News
e Morgan's Hetepad vi (Blog) @ Would you like to become an Cracle ACE? #&

Contact Library News

.
* Join the Western Washington OUG Learn more about becoming an ACE
* Morgan's Oracle Podcast

® U5 Gowt. Mil. 5STIGs [Security Checklists) * ACE Directory

* Bryn Llewellyn's PL/ISGL White Paper ® ACE Google Map

* Bryn Llewellyn's Editioning White Paper ® ACE Program

* Explain Plan White Paper ® Stanley's Blog

| Congratulations to our newest ACEs

. L]
ORACLE
A /% and ACE Directors

| ACE Direcior
k ’ MEDECINT TANT FRONTIERES
DOCTORS WITHOUT BORDERS

cd SMORGAN_HOME

Daniel A. Morgan | damorganl2c@gmail.com www.morganslibrary.org
Insert Statements for DBAs and Developers Presented: NYOUG, 12 September, 2014

cd SMORGAN_BASE/San_Francisco

=
"

. i 1"" .
| e b
|II - - —

\ 3 y e
N i B T
.l. £ . .) - i-l @ @4— I ¥rro

-
o
{
!

et .l

My Sled Meets Larry's

Travel Log: Peru 2010

<
—
o
N
n
(@)
B0
(S
Q
©
(S
O

Travel Log

Travel Log: Galapagos 2014

Travel Log: New York 2014

Daniel A. Morgan | damorganl2c@gmail.com | www.morganslibrary.org
Insert Statements for DBAs and Developers Presented: NYOUG, 12 September, 2014 11

IGGOUG: The New Users Group On The Block

e

L o Kgoug.ong

E’.

i3 DuciuckGe [Google Emal | Humor | Wews Orace | Scence Headires = 11.2 Uipcabed Bocks 12,1 Updated Books:

International GoldenGate Oracle Users Group

Oracle GG Docurmentation

& 12¢c GoldenGate

* 1121 GoldenGale
* 11110 GoldenCals
* 1111 Goldentzale
* 104 GoldenGals

Blogs & Links

Elogs, links, sample code, and
ticks & traps focusing on GoldanGate

S05: Support Our Sponsors

We want to thank our supporiers and
sponsors for makang this webste possible
Please suppaort tham toa

Daniel A. Morgan | damorganl2c@gmail.com
Insert Statements for DBAs and Developers

Welcome to the GoldenGate Users Group. We ane creating a
technical community 1o provide a fecus for the international
community involved in deploying and configuring Oracle’s
GoldenGate softwara,

Flease read our editor's page to find out more about our
goals
Click Here

I you would like 1o become oné ol our community's founding
members click on the "Members™ link below. We will have
application forms posted very soon that you can submit.

If you have links fo content you have written, or content
written by others that you think would be of value to the
commanity, please email us the information so we can share

Our focus ks GoldenGate Sofrarare not any specific database
vendors product we will be looking for information about
projects with:

Oracle Sybase ASE
DE2 Teradata
50L Server 7 -t

Wi look forward to meeting as many of you as possible at
our first meeting in San Francisco at OpenWorld 2014.

www.iggoug.org

www.morganslibrary.org

Ple & kB w- @ G

2014 Organizational Meeting

If you will be in San Francisco for
DpenWorld plaase plan to meat with
us: details to be announced here s0on

Training Programs
IGGE0UG pronades independent

hands-on clasgses focusing using
Ovacle, SOL Server and DB2

racla ACE Progr
Fing An Cracl

Warl to become an ACE 1007
Contact our leadership team

Leadership Team

Our leadership tearm is here because of
their dedication to the user community.,

Presented: NYOUG, 12 September, 2014

OpenWorld Birds-of-a-Feather Session

= |f you are coming to OpenWorld and are interested in
GoldenGate there is a special session on Tuesday evening at
6:30pm ... location to be announced on the IGGOUG website

within a week.
= This will be the place to meet the GG product management
and help form the new group.

www.iggoug.org

IGGOUG 2015 Conference

Membership Qualifications

To become a member of the International GoldenGate OUG,
you must meet one or more of the following qualifications.

y hardware, software, complete?
Join us at our 2015 ;unferenbe

Terms of Use

= This room is an unsafe harbour

= No one from Oracle has previewed this presentation
= No one from Oracle knows what I'm going to say

= No one from Oracle has supplied any of my materials

= This presentation is about capabilities built into the Oracle
database that Oracle has never promoted but that can have a
substantial impact on database performance

This disclaimer has not been approved by Oracle Legal

Why Is An ACE Director Focusing On Insert Statements?

= Because no one else is
= Because Oracle University doesn't teach this material
= Because there are 17 pages in the 12c docs on INSERT

= Because almost no one knows the full syntax for basic DML
statements

= Because we have now spent more than 30 years talking about
performance tuning and yet the number one conference and
training topic remains tuning which proves that we need to
stop focusing on edge cases and focus, instead, on the basics

= Because explain plans, AWR Reports, and trace files will never
fix a problem if you don't know the full range of syntaxes
available

= Because the best way to achieve high performance is to
choose techniques that reduce resource utilization

Daniel A. Morgan | damorganl2c@gmail.com | www.morganslibrary.org

Insert Statements for DBAs and Developers Presented: NYOUG, 12 September, 2014 16

Insert Statements

What Is SQL DML?

= DML stands for Data Manipulation Language

= DML is a direct reference to the following SQL statements
= |INSERT
= UPDATE
= DELETE
= MERGE

SQL INSERT Statement Topics (1:2)

= Basic Insert

= |[NSERT WHEN

= |[NSERT ALL

= |[NSERT ALL WHEN

= |[NSERT FIRST WHEN

= [NSERT INTO A SELECT STATEMENT
= [NSERT WITH CHECK OPTION

= View Inserts

= Editioning View Inserts

= Partitioned Table Insert

SQL INSERT Statement Topics (2:2)

Tables with Virtual Columns Insert
Tables with Hidden Columns Insert
Create Table As Inserts

Nested Table Inserts

VARRAY Table Inserts

MERGE Statement Insert

PL/SQL INSERT Statement Topics

= Record inserts

= FORALL INSERTSs

= FORALL MERGE Inserts

= LOB Inserts

= DBMS_SQL Dynamic Inserts

= Native Dynamic SQL Inserts

= RETURNING Clause with a Sequence

= RETURNING Clause with an Identity Column

Performance Tuning INSERT Statement Topics

®= Too Many Columns

= Column Ordering

= Aliasing and Fully Qualified Names
= |mplicit Casts

= APPEND hint

= APPEND_VALUES hint

= DBMS_ERRLOG built-in package
= CHANGE_DUPKEY_ERROR_INDEX hint
= |GNORE_ON_DUPKEY_INDEX hint

= DBMS_STATS
= |nsert Statement Most Common Error

SQL Insert Statements

Basic INSERT Statement (1:2)

= Use this syntax to perform inserts into a single column in a
heap, global temporary, IOT, or most partitioned tables

INSERT INTO <table_name>
(<column_name>)

VALUES

(<value>) ;

CREATE TABLE state (
state_abbrev VARCHAR2(2));

INSERT INTO state
(state_abbrev)
VALUES

('NY");

COMMIT;

SELECT * FROM state;

Basic INSERT Statement (2:2)

= Use this syntax to perform inserts into multiple columnsin a
heap, global temporary, IOT, or most partitioned tables

INSERT INTO <table_name>
(<column_name>, <column_name> [,...])
VALUES

(<value>, <value> [,<value>]);

CREATE TABLE state (
state_abbrev VARCHAR2 (2),
state_name VARCHAR2 (30)) ;

INSERT INTO state
(state_abbrev, state_name)
VALUES

("NY', 'New York');

COMMIT;

SELECT * FROM state;

INSERT WHEN

= Use this syntax to conditionally insert rows into multiple
tables

INSERT

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_list>)

ELSE
INTO <table name> (<column_list>)
VALUES (<values_list>)

SELECT <column_list> FROM <table_name>;

INSERT

WHEN (deptno=10) THEN
INTO emp_10 (empno,ename, job,mgr, sal,deptno)
VALUES (empno, ename, job,mgr, sal,deptno)

WHEN (deptno=20) THEN
INTO emp_20 (empno,ename, job,mgr, sal,deptno)
VALUES (empno, ename, job,mgr, sal,deptno)

WHEN (deptno=30) THEN
INTO emp_30 (empno,ename, job,mgr,sal,deptno)
VALUES (empno, ename, job,mgr, sal,deptno)

ELSE
INTO leftover (empno,ename, job,mgr,sal,deptno)
VALUES (empno, ename, job,mgr, sal,deptno)

SELECT * FROM emp;

INSERT ALL

= Use this syntax to unconditionally insert data into multiple
tables

= Note that some columns go into one table ... others into both

INSERT ALL

INTO <table name> VALUES <column_name_ list)
INTO <table name> VALUES <column_name_ list)

<SELECT Statement>;

INSERT ALL

INTO ap_cust VALUES (customer_id, program_ id, delivered_date)
INTO ap_orders VALUES (order_date, program id)

SELECT program_id, delivered_date, customer_id, order_date
FROM airplanes;

INSERT ALL WHEN

= With "ALL", the default value, the database evaluates each
WHEN sequentially

INSERT ALL

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_1list>)

WHEN (<condition>) THEN
INTO <table name> (<column_list>)
VALUES (<values_1list>)

ELSE
INTO <table name> (<column_list>)
VALUES (<values_1list>)

SELECT <column_list> FROM <table name>;

INSERT ALL

WHEN (deptno=10) THEN
INTO emp_10 (empno,ename, job,mgr, sal,deptno)
VALUES (empno,ename, job,mgr, sal, deptno)

WHEN (deptno=20) THEN
INTO emp_20 (empno,ename, job,mgr, sal,deptno)
VALUES (empno,ename, job,mgr, sal, deptno)

WHEN (deptno<=30) THEN
INTO emp_30 (empno,ename, job,mgr, sal,deptno)
VALUES (empno,ename, job,mgr, sal, deptno)

ELSE
INTO leftover (empno,ename, job,mgr,sal,deptno)
VALUES (empno,ename, job,mgr, sal, deptno)

SELECT * FROM emp;

INSERT FIRST WHEN

= With FIRST the database evaluates each WHEN clause in the
order in which it appears in the statement

INSERT FIRST

WHEN <condition> THEN

INTO <table_name> VALUES <column_name_list)
INTO <table_name> VALUES <column_name_list)

<SELECT Statement>;

INSERT FIRST
WHEN customer_id < 'I' THEN

INTO cust_ah

VALUES (customer_id, program_id, delivered_date)
WHEN customer_id < 'Q' THEN

INTO cust_ip

VALUES (customer_id, program_id, delivered_date)
WHEN customer_id > 'PZzZ' THEN

INTO cust_qgz

VALUES (customer_id, program_id, delivered_date)
SELECT program_id, delivered_date, customer_id, order_date
FROM airplanes;

INSERT Into A SELECT Statement

= Use this syntax to INSERT rows into one table as part of a
SELECT statement from itself or a different table or tables

INSERT INTO <table_name> <SELECT Statement>;

CREATE TABLE state (

zip_code VARCHAR2 (5) NOT NULL,
state_abbrev VARCHAR2 (2) NOT NULL,
city_name VARCHAR2 (30)) ;

INSERT INTO (

SELECT deptno, dname, loc

FROM dept)

VALUES (99, 'TRAVEL', 'SEATTLE');

INSERT with Check Option

= Use this syntax to limit inserted rows to those that pass CHECK

OPTION validation

INSERT INTO (
<SQL_statement> WITH CHECK OPTION)

VALUES
(value_list);

INSERT INTO (
SELECT deptno, dname, loc

FROM dept
WHERE deptno < 30 WITH CHECK OPTION)

VALUES (99, 'TRAVEL', 'SEATTLE');

INSERTing Into A View

= Evaluate whether a view column is insertable

= Views with aggregations, CONNECT BY, and other syntaxes
may not be insertable

desc cdb_updatable_columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT(*)
FROM cdb_updatable_columns cuc
WHERE (cuc.con_id, cuc.owner, cuc.table_name) IN
(SELECT cv.con_id, cv.owner, cv.view_name
FROM cdb_views cv)
GROUP BY cuc.con_id, cuc.owner, cuc.insertable
ORDER BY 1,2, 3;

CON_ID OWNER INS COUNT (*)
2 ORDSYS NO 4
2 ORDSYS YES 4
2 SYS NO 45190
2 SYS YES 22415
2 SYSTEM NO 172
2 SYSTEM YES 14
2 WMSYS NO 736
2 WMSYS YES 160

INSERTing Into An Editioning View

= All editioning views are insertable ... but be sure you are in
the correct edition

SQL> CREATE EDITION demo_ed;

SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT program_id, line_ number
3 FROM airplanes;
View created.
SQL> ALTER SESSION SET EDITION=demo_ed;
Session altered.
SQL> CREATE OR REPLACE EDITIONING VIEW test AS
2 SELECT line_number, program id
3 FROM airplanes;

View created.

SQL> SELECT * FROM user_editioning views_ae;

VIEW_NAME TABLE_NAME EDITION_NAME
TEST ATIRPLANES ORASBASE
TEST ATRPLANES DEMO_ED

INSERTing Into A Partitioned Table

= With HASH, LIST, and RANGE partitioning any INSERT
statement will work

= With Partition by SYSTEM you must think more clearly

CREATE TABLE syst_part (
tx_id NUMBER (5) ,
begdate DATE)

PARTITION BY SYSTEM (
PARTITION pl,

PARTITION p2,

PARTITION p3);

INSERT INTO syst_part VALUES (1, SYSDATE-10);
*
ERROR at line 1:
ORA-14701: partition-extended name or bind variable must be used for DMLs on tables
partitioned by the System method

INSERT INTO syst_part PARTITION (pl) VALUES (1, SYSDATE-10);
INSERT INTO syst_part PARTITION (p2) VALUES (2, SYSDATE);
INSERT INTO syst_part PARTITION (p3) VALUES (3, SYSDATE+10);

SELECT * FROM syst_part PARTITION(p2);

INSERTing Into A Table With Virtual Columns

= Virtual columns will appear in a DESCRIBE statement but you
cannot insert into them directly

CREATE TABLE wvcol (

salary NUMBER (8),

bonus NUMBER (3),

total_comp NUMBER(10) AS (salary+bonus)) ;

desc vcol

SELECT column_id, column_name, virtual column
FROM user tab cols
WHERE table_name = 'VCOL'

INSERT INTO wvcol

(salary, bonus, total_comp)
VALUES

(1,2,3);

INSERT INTO wvcol
(salary, bonus)
VALUES

(1,2);

SELECT * FROM vcol;

INSERTing Into A Table With Invisible Columns

= |nvisible columns will not appear in a DESCRIBE statement but
you can insert into them directly

CREATE TABLE wvis (
rid NUMBER,
testcol VARCHARZ2 (20));

CREATE TABLE invis (

rid NUMBER,

testcol VARCHARZ2 (20) INVISIBLE) ;

desc vis

desc invis

SELECT table_name, column_name, hidden_ column
FROM user tab cols —— not in user tab columns
WHERE table name like '$VIS';

INSERT INTO invis

(rid, testcol)

VALUES

(1, 'TEST'");

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

CREATE TABLE AS INSERTS

= Use this syntax to create a new table as the result of a SELECT

statement

CREATE TABLE <table_name>
AS <SELECT Statement>;

CREATE TABLE column_subset AS
SELECT coll, col3, colb
FROM servers;

desc column_subset

SELECT COUNT (*)
FROM column_subset;

Nested Table Insert

= Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourseList AS TABLE OF VARCHARZ (64);
/

CREATE TABLE department (

name VARCHAR2 (20),

director VARCHAR2 (20),

office VARCHARZ2 (20),

courses Courselist)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department

(name, director, office, courses)
VALUES

('"English', 'Tara Havemeyer', 'Breakstone Hall 205', CourselList (
'Expository Writing',

'"Film and Literature',

'Modern Science Fiction',
'Discursive Writing',

'"Modern English Grammar',
'"Introduction to Shakespeare',
'Modern Drama',

'The Short Story',

'The American Novel'));

VARRAY Table Insert

= Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY (50) OF Project;
/

CREATE TABLE department (
dept_id NUMBER(2),

dname VARCHAR2 (15),
budget NUMBER (11, 2),
projects Projectlist) ;

INSERT INTO department

VALUES (30, 'Accounting', 1205700,

ProjectList (Project(l, 'Design New Expense Report', 3250),
Project (2, 'Outsource Payroll', 12350),

Project (3, 'Evaluate Merger Proposal', 2750),

Project (4, 'Audit Accounts Payable', 1425)));

MERGE Statement Insert

= Use MERGE statements where an insert or other DML is
conditioned on the results of a SELECT statement

MERGE INTO bonuses b
USING (
SELECT employee_id, salary, dept_no
FROM employee
WHERE dept_no =20) e
ON (b.employee_id = e.employee_id)
WHEN MATCHED THEN
UPDATE SET b.bonus = e.salary * 0.1
DELETE WHERE (e.salary < 40000)
WHEN NOT MATCHED THEN
INSERT (b.employee_id, b.bonus)
VALUES (e.employee_id, e.salary * 0.05)
WHERE (e.salary > 40000);

PL/SQL Insert Statements

Record Inserts

= Use this syntax to insert based on an array that matches the
target table rather than named individual columns

CREATE TABLE t AS
SELECT table_name, tablespace_name
FROM all_tables;

SELECT COUNT (*)
FROM t;

DECLARE

trec t%ROWTYPE;

BEGIN
trec.table_name := 'NEW';
trec.tablespace_name := 'NEW_TBSP';

INSERT INTO t
VALUES trec;

COMMIT;
END;
/

SELECT COUNT (*) FROM t;

FORALL INSERTS (1:3)

= Use this syntax to greatly
enhance performance
but be sure you
understand the concept
of DIRECT LOAD INSERTSs

= With this syntax | can
insert 500,000 rows per
second on my laptop

= Learn
= Limits Clause
= Save Exceptions
= Partial Collections
= Sparse Collections
® |n Indices Of Clause

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS
TYPE myarray IS TABLE OF parent%ROWTYPE;
1_data myarray;

CURSOR r IS
SELECT part_num, part_name
FROM parent;

BatchSize CONSTANT POSITIVE := 1000;
BEGIN
OPEN r;
LOOP
FETCH r BULK COLLECT INTO 1_data LIMIT BatchSize;

FOR j IN 1 .. 1_data.COUNT LOOP
1_data(j) .part_num := 1_data(j).part_num * 10;
END LOOP;

FORALL i IN 1..1_data.COUNT
INSERT INTO child VALUES 1_data(i);

EXIT WHEN 1_data.COUNT < BatchSize;
END LOOP;
COMMIT,;
CLOSE r;
END fast_way;
/

FORALL INSERTS (2:3)

= Use this syntax to greatly
enhance performance
but be sure you
understand the concept
of DIRECT LOAD INSERTSs

= With this syntax | can
insert 500,000 rows per
second on my laptop

= Learn
= Limits Clause
= Save Exceptions
= Partial Collections
= Sparse Collections
® |n Indices Of Clause

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS
TYPE PartNum IS TABLE OF parent.part_num%$TYPE
INDEX BY BINARY INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part_name%TYPE
INDEX BY BINARY INTEGER;

pnam_t PartName;

BEGIN
SELECT part_num, part_name
BULK COLLECT INTO pnum_t, pnam_t
FROM parent;

FOR i1 IN pnum_t.FIRST .. pnum_t.LAST LOOP
pnum_t (i) := pnum_t (i) * 10;

END LOOP;

FORALL i IN pnum_t.FIRST .. pnum_t.LAST

INSERT INTO child
(part_num, part_name)

VALUES
(pnum_t (i), pnam_t(i));
COMMIT,;

END fast_way;

/

FORALL INSERTS (3:3)

] h' I CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS
Use t IS Syntax to great y TYPE parent_rec IS RECORD

(

enhance performance gy T S
but be Su re you p_rec parent_rec;

CURSOR ¢ IS

underStand the Concept SELECT part_num, part_name FROM parent;
of DIRECT LOAD INSERTS | :_cone sooreay;

BEGIN
OPEN c;

= With this syntax | can o0

FETCH ¢ BULK COLLECT INTO p_rec.part_num, p_rec.part_name

1 LIMIT 500;
insert 500,000 rows per LT S0 oo,
Second On my IaptOp FOR 1 IN 1 .. p_rec.part_num.COUNT LOOP
p_rec.part_num(i) := p_rec.part_num(i) * 10;
u Learn END LOOP;
FORALL i IN 1 .. p_rec.part_num.COUNT
= Limits Clause INSERT INTO child
(part_num, part_name)
H VALUES
" Save Exceptlons (p_rec.part_num(i), p_rec.part_name(i));
= Partial Collections EXIT WHEN (1_done);
END LOOP;
= Sparse Collections COMMIT;
CLOSE c;
END fast_way;

= |n Indices Of Clause)

FORALL MERGE Inserts

= Use this syntax to perform MERGE statements using array
data

CREATE OR REPLACE PROCEDURE forall _merge AUTHID CURRENT_USER IS
TYPE ridval IS TABLE OF forall_ tgt.rid$TYPE
INDEX BY BINARY_INTEGER;
1 _data ridval;
BEGIN
SELECT rid BULK COLLECT INTO 1_data
FROM forall_src;

FORALL i IN 1_data.FIRST .. 1_data.LAST
MERGE INTO forall_tgt ft
USING (

SELECT rid

FROM forall_src fs

WHERE fs.rid = 1_data(i)) al
ON (al.rid = ft.rid)
WHEN MATCHED THEN

UPDATE SET upd = 'U'
WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (1_data(i), 'I', NULL);
COMMIT;
END forall_ merge;

/

LOB Inseris

= When creating LOB objects
be sure to use SecureFiles
and be sure that you
understand PCTVERSION,
CHUNK, and other storage
parameters

DECLARE
src_file BFILE;
dst_file BLOB;
lgh_file BINARY_INTEGER;
retval VARCHAR2 (30) ;
BEGIN
src_file := bfilename('CTEMP', 'sphere.mpg');

INSERT INTO sct

(rid, bcol)

VALUES

(1, EMPTY BLOB())

RETURNING bcol INTO dst_file;

SELECT bcol
INTO dst_file
FROM sct
WHERE rid = 1
FOR UPDATE;

dbms_lob.fileopen (src_file, dbms_lob.file_readonly);
lgh_file := dbms_lob.getlength(src_file);
dbms_lob.loadFromFile(dst_file, src_file, lgh_file);

UPDATE sct
SET bcol = dst_file
WHERE rid = 1;

dbms_lob.setContentType (dst_file, 'MPG Movie');
retval := dbms_lob.getContentType (dst_file);
dbms_output.put_line(retval);

dbms_lob.fileclose(src_file);
END load_file;
/

DBMS_SQL Dynamic Inserts

= DBMS _SQL is the legacy implementation of dynamic SQL in
the Oracle database introduced in version 7.3.4.

CREATE OR REPLACE PROCEDURE single_row_insert (cl NUMBER, cZ2 NUMBER, r OUT NUMBER) IS
c NUMBER;
n NUMBER;
BEGIN
c := dbms_sqgl.open_cursor;

dbms_sqgl .parse(c, 'INSERT INTO tab VALUES (:bndl, :bnd2) ' ||
'RETURNING cl*c2 into :bnd3', 2);

dbms_sqgl .bind_variable(c, 'bndl', cl);
dbms_sqgl .bind_variable(c, 'bnd2', c2);
dbms_sqgl .bind_variable(c, 'bnd3', r);

n := dbms_sqgl.execute(c);

dbms_sqgl .variable_value(c, 'bnd3', r); —-- get value of outbind
dbms_sgl.close_cursor(c);
END single_row_insert;

/

Native Dynamic SQL Inserts

= Native Dynamic SQL has largely replaced DBMS _SQL as it is
robust and more easily coded

BEGIN
FOR i IN 1 .. 10000
LOOP
EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'
USING 1i;
END LOOP;
END;
/

RETURNING Clause with a Sequence

= Use this syntax to return values from an insert statement
unknown to the program inserting the row

INSERT INTO <table_name>
(column_list)

VALUES

(values_list)

RETURNING <value_name>
INTO <variable name>;

DECLARE

X emp.empno$TYPE;

r rowid;

BEGIN
INSERT INTO emp
(empno, ename)
VALUES
(seq _emp.NEXTVAL, 'Morgan')
RETURNING rowid, empno
INTO r, Xx;

dbms_output.put_line(r);
dbms_output.put_line(x);
END;
/

RETURNING Clause with an Identify Column

= Use this syntax to return values from an insert statement
unknown to the program inserting the row

CREATE TABLE idcoltab (
rec_id NUMBER GENERATED ALWAYS AS IDENTITY,
coltxt VARCHARZ2 (30));

DECLARE
rid idcoltab.rec_ id%TYPE;
BEGIN
INSERT INTO idcoltab
(coltxt)
VALUES
("Morgan')
RETURNING rec_id
INTO rid;

dbms_output.put_line(rid);
END;
/

Performance Tuning Insert Statements

Too Many Columns (1:2)

= QOracle claims that a table can contain up to 1,000
columns: It is not true

= The maximum number of real table columns is 255

= Break the 255 barrier and optimizations such as advanced
and hybrid columnar compression no longer work

= A 1,000 column table is actually four tables joined
together seamlessly behind the scenes just as a
partitioned table appears to be a single segment but isn't

= Be suspicious of any table with more than 50 columns. At
100 columns it is time to reread the Codd-Date rules on
normalization

= Think vertically not horizontally

Too Many Columns (2:2)

= Be very suspicious of any table with column names in the
form "SPARE1", "SPARE2"

= The more columns a table has the more cpu is required

when accessing columns to the right (as the table is displayed in a
SELECT * query)

Column Ordering (1:3)

= Computers are not humans and tables are not paper forms
= CBO's column retrieval cost

Oracle stores columns in variable length format
Each row is parsed in order to retrieve one or more columns

Each subsequently parsed column introduces a cost of 20 cpu
cycles regardless of whether it is of value or not

Column Ordering (2:3)

= These tables will be accessed by person_id or state: No one
will ever put the address2 column into the WHERE clause as

a filter
CREATE TABLE customers (.
person_id NUMBER, Common DeSIQn
first _name VARCHAR2(30) NOT NULL,
middle_init VARCHAR2(2),
last_name VARCHAR2 (30) NOT NULL,
addressl VARCHAR2 (30),
address?2 VARCHAR2 (30),
city VARCHAR2 (30),
state VARCHARZ2 (2)) ;
CREATE TABLE customers (
person_id NUMBER, Optimized Design
last_name VARCHARZ2 (30) NOT NULL,
state VARCHAR2 (2) NOT NULL,
city VARCHARZ2 (30) NOT NULL,
first_name VARCHAR2(30) NOT NULL,
addressl VARCHARZ2 (30),
address?2 VARCHARZ2 (30),
middle_init VARCHAR2(2));

Column Ordering (3:3)

" Proof column order matters

CREATE TABLE read_test AS

SELECT =

FROM apex_040200.wwv_flow_page_plugs
WHERE rownum = 1;

SQL> explain plan for
2 select * from read_test;

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
| 0 | SELECT STATEMENT | | 1 | 214K | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| READ_TEST | 1 | 214K | 2 (0)] 00:00:01 |

—— fetch value from column 1

Final cost for query block SELS1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13
Resc: 2.0002 Resc_io: 2.0000 Resc_cpu: 7271
Resp: 2.0002 Resp_io: 2.0000 Resc_cpu: 7271

—— fetch value from column 193

Final cost for query block SELS1 (#0) - All Rows Plan:
Best join order: 1
Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002
Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111
Resp: 2.0003 Resp_io: 2.0000 Resc_cpu: 11111

Aliasing and Fully Qualified Names

= When you do not use fully qualified names Oracle must do

the work for you

®= You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id
FROM servers s, serv_inst i
WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr_id
FROM uwclass.servers s, uwclass.serv_inst i

WHERE s.srvr_id = i.srvr_id;

Implicit Casts

= Code that does not correctly define data types will either fail
to run or run very inefficiently

The following example shows both the correct way and the
incorrect way to work with dates. The correct way is to
perform an explicit cast

SQL> create table t (
2 datecol date);

Table created.

SQL> insert into t wvalues ('0l1-JAN-2012');

1 row created.

SQL> insert into t wvalues (TO_DATE ('0l1-JAN-2012"'));

1 row created.

APPEND Hint

= The APPEND hint enables direct-path INSERT if the database is
running in serial mode. The database is in serial mode if you
are not using Enterprise Edition. Conventional INSERT is the

default in serial mode, and direct-path INSERT is the default in
parallel mode

= |n direct-path INSERT data is appended above the high-water
mark potentially improving performance

INSERT /*+ APPEND */ INTO t
SELECT * FROM servers;

APPEND_VALUES Hint (1:2)

= Use this new 12c hint instructs the optimizer to use direct-
path INSERT with the VALUES clause

= |f you do not specify this hint, then conventional INSERT is
used

= This hint is only supported with the VALUES clause of the
INSERT statement

= |f you specify it with an insert that uses the subquery syntax it
is ignored

APPEND_VALUES Hint (2:2)

SQL> EXPLAIN PLAN FOR
2 INSERT INTO t
3 VALUES
4 ('XYz');

SQL> SELECT * FROM TABLE (dbms_xplan.display);

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0O	INSERT STATEMENT		1	100	1 (0)] 00:00:01
1	LOAD TABLE CONVENTIONAL	T				

SQL> EXPLAIN PLAN FOR
2 INSERT /*+ APPEND_VALUES */ INTO t
3 VALUES
4 ('XYz');

SQL> SELECT * FROM TABLE (dbms_xplan.display);

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
O	INSERT STATEMENT		1	100	1 (0)] 00:00:01	
1	LOAD AS SELECT	T				
2 BULK BINDS GET						

DBMS_ERRLOG (12)

= Provides a procedure that enables creating an error logging
table so that DML operations can continue after encountering

errors rather than performing an abort and rollback

= Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are
not supported

= LOG ERRORS effectively it turns
array processing into single row

processing, so it adds an
expense at the moment of

inserting, even though it saves
you the overhead of an array

rollback if a duplicate gets
into the data (Jonathan Lewis)

Daniel A. Morgan | damorganl2c@gmail.com
Insert Statements for DBAs and Developers

www.morganslibrary.org

CREATE TABLE t AS
SELECT *

FROM all_tables
WHERE 1=2;

ALTER TABLE t

ADD CONSTRAINT pk_t

PRIMARY KEY (owner, table_name)
USING INDEX;

ALTER TABLE t
ADD CONSTRAINT cc_t
CHECK (blocks < 11);

INSERT /*+ APPEND */ INTO t
SELECT *
FROM all_tables;

Presented: NYOUG, 12 September, 2014

63

DBMS_ERRLOG (22)

exec dbms_errlog.create_error log('T');
desc errS_t

INSERT /*+ APPEND */ INTO t
SELECT *

FROM all_tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT (*) FROM t;

COMMIT;

SELECT COUNT (*) FROM t;

SELECT COUNT(*) FROM err$_t;

set linesize 121

col table_name format a30

col blocks format a7’

col ora_err_mesg$ format a60
SELECT ora_err_mesg$, table_name,

blocks
FROM err$_ t;

CHANGE_DUPKEY_ERROR_INDEX hint

= Use this hint to unambiguously identify a unique key violation
for a specified set of columns or for a specified index

= When a unique key violation occurs for the specified index, an
ORA-38911 error is reported instead of an ORA-00001

INSERT /*+ CHANGE_DUPKEY ERROR INDEX (T, TESTCOL) */ INTO t
(testcol)

VALUES

('A');

IGNORE_ON_DUPKEY_INDEX hint

= This hint applies only to single-table INSERT operations

" |t causes the statement to ignore a unique key violation for a
specified set of columns or for a specified index

= When a unique key violation is encountered, a row-level

rollback occurs and execution resumes with the next input
row

= |f you specify this hint when inserting data with DML error

logging enabled, then the unique key violation is not logged
and does not cause statement termination

INSERT /*+ IGNORE_ROW_ON DUPKEY INDEX(T,UC_T TESTCOL)) */ INTO t
(testcol)
VALUES

(1)7

DBMS_STATS

= System Stats
= Fixed Object Stats
= Dictionary Stats

= Set stats for new partitions so that when inserts take place the
optimizer knows what you are inserting

exec

exec

exec

exec

dbms_stats.set_table_ stats (USER,

dbms_stats.set_index stats (USER,
numdist=>10000, clstfct=>1);

dbms_stats.set_column_ stats (USER,

dbms_stats.set_table_ stats (USER,

'EMP',

'ix_emp_deptno',

'emp',

'dept’,

numrows=>1000000, numblks=>10000, avgrlen=>74);

numrows=>1000000, numlblks=>1000,

'deptno', distcnt=>10000) ;

numrows=>100,

numblks=>100) ;

INSERT Statement Most Common Error

= |f you do not name columns DDL can break your statement
and not doing so will use a less efficient code path

INSERT INTO <table name>

VALUES
(<comma_separated_value_list>);

CREATE TABLE state (
state_abbrev VARCHAR2(2),
state_name VARCHAR2 (30),
city_name VARCHAR2 (30)) ;

INSERT INTO state
(state_abbrev, state_name)
VALUES

("NY', 'New York');

INSERT INTO state
VALUES
("NY', 'New York');

Conclusion

= How comfortable are you with your knowledge of UPDATE

and DELETE statements?
= The most important principle in INSERT statements, and
anything else in Oracle is "do the least work"

= Minimize CPU utilization
= Minimize /O
= Minimize network utilization
= Bandwidth
= Round Trips
= Minimize your memory footprint

= The following was written by Jonathan Lewis: I've never heard
better advice

Rules for Hinting

1. Don't
2. If you must use hints, then assume you've used them incorrectly.

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is
going to do the wrong thing. Because of (2) above; you've been lucky so far,
but the patch/upgrade lets you discover your mistake.

4. Every time you apply some DDL to an object that appears in a piece of hinted
SQL assume that the hinted SQL is going to do the wrong thing. Because of (2)
above; you've been lucky so far, but the structural change lets you discover
your mistake.

Daniel A. Morgan | damorganl2c@gmail.com | www.morganslibrary.org

Insert Statements for DBAs and Developers Presented: NYOUG, 12 September, 2014

71

Questions

ERROR at line 1:
ORA-00028: your session has been killed

Feel free to ask questions now or contact me at PTC
daniel.morgan@perftuning.com / +1 206-669-2949

Thank You

