Oracle Database

Architecture and New Features

Martin Millstam
Senior Sales Consultant
Topics

- Oracle RAC architecture
 - Clusterware
 - ASM
 - RAC
- Multitenant
- Application Continuity
The New Oracle RAC 12c

Oracle RAC 12c provides:

1. Better Business Continuity and High Availability (HA)

2. Agility and Scalability

3. Cost-effective Workload Management

Using

- A standardized and improved deployment and management
- A familiar and matured HA stack
Clusterware

- What is it?
- What does it do?
What does CSSD do?

CSSD monitors and evicts nodes

- Monitors nodes using 2 communication channels:
 - Private Interconnect ⇨ Network Heartbeat
 - Voting Disk based communication ⇨ Disk Heartbeat

- Evicts (forcibly removes nodes from a cluster) nodes dependent on heartbeat feedback (failures)
Network Heartbeat

Interconnect basics

- Each node in the cluster is “pinged” every second
- Nodes must respond in css_misscount time (defaults to 30 secs.)
 - Reducing the css_misscount time is generally not supported

- Network heartbeat failures will lead to node evictions
 - CSSD-log: [date / time] [CSSD][1111902528]clssnmPollingThread: node mynodename (5) at 75% heartbeat fatal, removal in 6.770 seconds
Disk Heartbeat

Voting Disk basics

- Each node in the cluster “pings” (r/w) the Voting Disk(s) every second
- Nodes must receive a response in (long / short) diskTimeout time
 - I/O errors indicate clear accessibility problems \(\rightarrow\) timeout is irrelevant

- Disk heartbeat failures will lead to node evictions
 - CSSD-log: ... [CSSD] [1115699552] >TRACE: clssnmReadDskHeartbeat: node(2) is down. rcfg(1) wrtcnt(1) LATS(63436584) Disk lastSeqNo(1)
“Simple Majority Rule”

Voting Disk basics

- Oracle supports redundant Voting Disks for disk failure protection
- “Simple Majority Rule” applies:
 - Each node must “see” the simple majority of configured Voting Disks at all times in order not to be evicted (to remain in the cluster)

\[\text{trunc}(n/2+1) \text{ with } n=\text{number of voting disks configured and } n \geq 1 \]
Insertion 2: Voting Disk in Oracle ASM

The way of storing Voting Disks doesn’t change its use

```
[GRID]> crsctl query css votedisk
  1.  2 1212f9d6e85c4ff7bf80cc9e3f533cc1 (/dev/sdd5) [DATA]
  2.  2 aafab95f9ef84f03bf6e26adc2a3b0e8 (/dev/sde5) [DATA]
  3.  2 28dd4128f4a74f73bf8653dabd88c737 (/dev/sdd6) [DATA]

Located 3 voting disk(s).
```

- Oracle ASM auto creates 1/3/5 Voting Files
 - Based on Ext/Normal/High redundancy and on Failure Groups in the Disk Group
 - Per default there is one failure group per disk
 - ASM will enforce the required number of disks
 - New failure group type: Quorum Failgroup
Oracle Automatic Storage Management (ASM) 12c
Oracle Automatic Storage Management (ASM)

Oracle Database 11.2 or earlier configuration

RAC Cluster

One to One Mapping of ASM Instances to Servers

Shared Disk Groups

Wide File Striping

ASM Cluster Pool of Storage

Disk Group A

Disk Group B

ASM Disk
Oracle ASM 12c – Overview

Oracle ASM 12c Standard Deployment

One to One Mapping of ASM Instances to Servers

Shared Disk Groups

Wide File Striping

RAC Cluster

Database Instance

ASM Instance

Node1

ASM

Node2

ASM

Node3

ASM

Node4

ASM

Node5

ASM

ASM Cluster Pool of Storage

Disk Group A

Disk Group B

ASM Disk
Introducing Oracle Flex ASM
Removal of One to One Mapping and HA

More Information in Appendix A
Supporting Pre-Oracle 12c Databases

Pre-Oracle 12c Databases require a local ASM instance

Databases share ASM instances

Shared Disk Groups

Wide File Striping
Oracle Multitenant

- Why?
- How?
Private Database Cloud Architectures

Oracle Database 11g

Virtual Machines

Dedicated Databases

Schema Consolidation

share servers

share servers and OS

share servers, OS and database

Increasing Consolidation
Private Database Cloud Architectures
Oracle Database 12c

Virtual Machines
- share servers

Dedicated Databases
- share servers and OS

Multitenant Database
- share servers, OS and database

Increasing Consolidation
Oracle Database Architecture
Requires memory, processes and database files

System Resources
New Multitenant Architecture

Memory and processes required at multitenant container level only

System Resources

Container Database
New Multitenant Architecture

Memory and processes required at multitenant container level only
Multitenant Architecture

Components of a Multitenant Container Database (CDB)

Pluggable Databases (PDBs)

PDBs
Root
CDB
Multitenant Architecture

- Multitenant architecture can currently support up to 252 PDBs
- A PDB feels and operates identically to a non-CDB
- You cannot tell, from the viewpoint of a connected client, if you’re using a PDB or a non-CDB
Unplug / plug
Simply unplug from the old CDB…
Unplug / plug

...and plug in to the new CDB...

- Moving between CDBs is a simple case of moving a PDB’s metadata
- An unplugged PDB carries with it lineage, opatch, encryption key info etc
Unplug / plug

Example

Unplug

```sql
alter pluggable database HCM
unplug into '/u01/app/oracle/oradata/.../hcm.xml'
```

Plug

```sql
create pluggable database My_PDB
using '/u01/app/oracle/oradata/.../hcm.xml'
```
Common Data Dictionary

Before 12.1: dilution over time
Oracle Data and User Data

- Multitenant fix: Horizontally-partitioned data dictionary
- Only Oracle system definition remains
- Data dictionary is diluted by customer’s metadata
Horizontally Partitioned Data Dictionary

- Oracle-supplied objects such as views, PL/SQL, etc., are shared across all PDBs using object “stubs”
- In-database virtualization
Multitenant Architecture – Dynamics

- PDBs share common SGA and background processes
- Foreground sessions see only the PDB they connect to
Multitenant Scalability

- Only small increments in memory as additional PDBs are added
Advantages of Oracle Multitenant Architecture

Increased Agility, Easy Adoption

- Self-contained PDB for each application
 - Applications run unchanged
 - Rapid provisioning (via clones)
 - Portability (via pluggability)

- Shared memory and background processes
 - More applications per server

- Common operations performed at CDB level
 - Manage many as one (upgrade, HA, backup)
 - Granular control when appropriate
Oracle Multitenant on Oracle RAC

Consider a Single Instance (SI), non-CDB
Oracle Multitenant on Oracle RAC

Then consider a RAC Database, non-CDB
Oracle Multitenant on Oracle RAC

Finally, picture a CDB RAC Database
Oracle Multitenant on Oracle RAC

The simplest way of converting a SI PDB to RAC: unplug/plug
Utilize Nodes in the Cluster to Support Flexible Consolidation Model

Improved Agility With Changing Workloads

Services

Single SGA per CDB Instance

Multitenant Container Database (CDB)
Improved Agility With Changing Workloads
Utilize Nodes in the Cluster to Support Flexible Consolidation Model

Services
Single SGA per CDB Instance

Node1
CDB Instance 1

Node2
CDB Instance 2

Node3
CDB Instance 3

Multitenant Container Database (CDB)
Application Continuity
Masks Unplanned & Planned Outages

- Replays in-flight (DML) work on recoverable errors
- Masks many hardware, software, network, storage errors and outages when successful
- Improves end-user experience and productivity without requiring custom application development
Application Continuity – Example
A reliable replay of in flight work

User selects product from application and purchases it from the web checkout

User transaction arrives at application infrastructure. It makes its way through the application tiers and results in a database transaction being created
Application Continuity – Example

A reliable replay of in flight work

The infrastructure hosting the database fails just before the transaction is committed to the database.
Application Continuity – Example

A reliable replay of in flight work

If the transaction needs to be replayed, “Application Continuity” will submit all of the inflight work to a surviving node in the cluster and perform a commit. This all happens transparently to the application committed or needs to be replayed.
Application Continuity – Example

A reliable replay of in flight work

The user receives confirmation that his order has been successfully completed.
Oracle RAC Fundamentals

Communication flow in the cluster

- Instances communicate over the private interconnect for 2 purposes:
 1. Function / message shipping
 2. Data shipping (block transfer)
 - In order to minimize spinning disk access
Oracle RAC Fundamentals

“3” ways of getting access to data

- Data is either stored
 1. Locally (local cache) → access time: nanoseconds
 2. Remote (global cache) → access time: micros.
 3. “On disk”
 - Flash cache → access time: microseconds
 - Disk controller cache → access time: micros.
 - Spinning disk → access time: milliseconds
Oracle RAC Fundamentals

Maximum “3” way communication to access data

- In the worst case,
 - The requester asks for **data** held in a remote instance
 - mastered in a third instance
Oracle RAC Fundamentals

Processes and Functions per instance

- Oracle RAC
- Oracle GI
- SGA
 - Library Cache
 - Dictionary Cache
 - Buffer Cache
 - Global Enqueue Service
 - Global Cache Service
 - Log buffer
- Cluster Private High Speed Network
- Oracle Process
- Oracle Process
- LMD0
- LM HB
- LMON
- LMSx
- DBW0
- LGWR

- Runs in Real Time Priority
- Oracle RAC: racdb1_1, racdb1_3
- Oracle GI: comet, dasher

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
Application Considerations

What to avoid in any case …

- Do not use (named) pipes
 - A pipe on one server may not exist on the other
Application Considerations
How to avoid “Write Hot Spots” in applications – part 1

- Frequent transactional changes to the same data blocks in all instances may result in “write hot spots”
 - In 99% of OLTP performance issues, write hot spots occur on indexes
- Block with pending changes may be “pinged” by other instance
 - Pending redo must be written to log before the block can be transferred
 - Latency for a deferred block transfer becomes dependent on delay for log IO
- Only for very frequently modified data
Application Considerations
How to avoid “Write Hot Spots” in applications – part 2

- Use **non-ordered & cached** sequences if sequence is used to generate primary key
 - `ALTER SEQUENCE S1 ... CACHE 10000+`

- Symptoms if not cached:
 - EQ or SQ contention

- **Ordered Sequences**
 - Do not scale well in Oracle RAC
 - Solution: Use them only on one instance in active-passive configuration
 - Create multiple per application
Application Considerations
How to avoid “Write Hot Spots” in applications – part 3

- Possible:
 - Consolidate applications to use only one server and route via services

- Optimize log flush:
 - Place redo logs on fast storage if performance critical; e.g. SSDs
 - Separate disks for logs from other IO busy disks
 - Implemented in 11.2.2.4 of Exadata and Oracle Database Appliance by default (Smart Logs and SSDs, respectively)

- Schema tuning only involves minimal modification and is the preferred option
Application Considerations

How to avoid “Write Hot Spots” in applications – part 4

- Global hash partitioned indexes
- Locally partitioned indexes
 - Both solutions achieve better cache locality
- Drop unused indexes
Application Considerations

How to avoid number of sessions related resource contention

- Control the number of concurrent sessions
 - Foreground processes are in time-share class
 - Scheduling delays on high context switch rates on busy systems may increase the variation in the cluster traffic times
 - More processes imply higher memory utilization and higher risk of paging

- How to control concurrent sessions:
 - Use connection pooling
 - Avoid connection storms (pool and process limits)

- Ensure that load is well-balanced over nodes
Application Considerations

Memory considerations part 1: optimize memory locally

- Avoid memory pressure!
 - Paging and Swapping activity on one node affects performance on all nodes
 - Severe Paging and Swapping activity on one node can cause instance evictions
 - #1 cause for service disruptions in clusters

- Use Memory Guard
 - QoS feature – available in monitoring only mode
 - Prevents new connections from coming in to a server that is already under memory pressure
Memory considerations part 2: use Solid State Disks to host swap space

- Use Solid State Disks (SSDs) to host swap space in order to increase node availability
 - Memory pressure can cause node evictions.
 - Preventing memory pressure is the solution.
 - If prevention is not successful and swapping is performed by the Operating System (OS),
 - hosting the swap space can mitigate the impact that extensive swapping can have on cluster operations on the affected server(s).

- More information:
 - My Oracle Support Note Doc ID: 1671605.1 – “Use Solid State Disks to host swap space in order to increase node availability”
Application Considerations
Memory considerations part 3: configure Huge Pages for Oracle RAC

- Use Huge pages for SGA (Linux)
 - Dramatic reduction in memory for page tables
 - SGA pages pinned in memory

- More information:
 - My Oracle Support note 361323.1 – HugePages on Linux: What It Is... and What It Is Not...
 - My Oracle Support note 401749.1 – Shell Script to Calculate Values Recommended Linux HugePages / HugeTLB Configuration

- Engineered systems provide templates for pre-configuration of huge pages for the SGA
Consolidation Tips and Tricks
What to consider when using more than one instance per server – part 1

1. Manage Memory Carefully

2. Use Instance Caging / set CPU_COUNT

3. Number of real-time processes needs to be taken into consideration

More details: