
1	
	

How to create a seamless R programming
environment on Windows 10

By Joseph DeArce 4/10/2017

This document describes the necessary steps for the installation of ROracle driver/package on
Windows 10 using several additional software packages to create a seamless R data processing
environment. These four other software packages are necessary for the creation of a complete
programming environment from a R client to a database server. You might ask why I should go
through the trouble of installing these complicated software products, my answer is simple
SPEED this connection is faster than ODBC, JDBC and anything else because it’s a native
connection. If you’re interested in processing large amounts of data and they reside in RDBM
databases, and you use R then ROracle is for you.

In benchmark comparisons, ROracle performed up to 79 times faster than RJDBC and 2.5 times
faster than RODBC for reading data across a range of 1000 to 1 million rows, and 10 to 1000
columns. ROracle shows scalability across NUMBER, VARCHAR2, TIMESTAMP, and
BINARY_DOUBLE data types.

Hardware	
Before we begin our installation, process lets describe our test system; it has the following
configuration:

• An Acer Laptop running Windows 10 with a Core7i quad processor,
• 16GB of memory.
• 1TB hard drive (not SSD).
• Installed is an Oracle 12c Enterprise database with an SGA of 4GB
• This database has a custom configuration.
• There are five PDB’s on the Oracle 12c R1 instance.

Prerequisites	
There are several prerequisites for the installation of ROracle, see the list below:

1) The first step is to install the R language software (CRANS) from the main R software
website, see the URL below. This site also has tutorials documentation, books, FAQs,
and other resources.

https://www.r-project.org/

2	
	

Download page

https://cran.r-project.org/bin/windows/base/

On the main download page, there are many resources for novices, FAQs, installation
instructions, a compatibility list, instructions on how to update packages and New Features. On
other pages, there are manuals and tutorials. The current version is 3.2.2 when you have
downloaded the file double-click on the file.

Follow the installation instructions.

2) We must install an IDE for R we will do this to make programing in R easier and more
intuitive. There are several IDEs to choose from, and a simple Google search will locate
them for you. I picked RStudio which is one of the better-known ones. RStudio can be
installed from the URL below.

https://www.rstudio.com/products/rstudio/download3/

3	
	

Click on the download link and wait until the file is downloaded to your machine then double-
click on it, you will see the screen below then follow the instructions of the installer. The most
current version I found was “RStudio 1.0.44 - Windows Vista/7/8/10”.

When the installer has finished and RStudio is installed, select it and bring it up. When RStudio
comes up you will see the main screen for the program, see below for an example.

4	
	

The programming environment is divided into three panels; the main programming panel takes
up half the window, the two additional panels show the environment and history. The others
have several tabs but open to the documentation page, plots and files will also be displayed here.

3) Installing	Oracle	Client	12c	
You will need to install the Oracle client to get access to the OCI libraries which the ROracle
depends on and create several environmental variables and add several configuration files to the
install directory. You can get the client software from the main Oracle database page. Here you
will be asked to agree to the Oracle OTN license which you must agree to, to be able to
download the software.

You should also sign up for an OTN account since it is free. The Oracle site can be very helpful
for getting timely information on Oracle developments for all their products. Also, Oracle has
many blogs by their development teams there. These blogs have a great deal of information and
insights on development trends.

First step is to download the Oracle client from the main database website, use the URL below.

http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html

Click on the downloads tab and agree to the OTN license, then select the file you wish to
download, in our case it’s the 64-bit Oracle client for 12c.

5	
	

Select the ‘Oracle Database 12c Release 1 (12.1.0.2)‘ and then click the ‘See All’ hyperlink.

Click on the ‘Oracle Database Client (12.1.0.2) for Windows (64x)’ and wait until the file is
downloaded.

6	
	

Move the file to your temporary working directory and unzip the software. Double-click on the
setup.exe file to begin the install.

Select your install option, I choose the ‘Administrator‘ option, this option will lead to less steps
being done than using the ‘InstantClient’ option to install and configure the ROracle software.
The instant Client option requires more steps and a more extensive configuration.

Chose a language and click ‘Next’.

7	
	

Here you must create a new user that does not have Admin rights to the server or the install
directory. This must be a regular Windows user. You will have the option to choose an existing
user or create a new one and when you’re ready enter ‘USER NAME’ and ‘PASSWORD’ then
click the ‘Next’ button.

Here you can change the installation default locations.

8	
	

Click ‘Next’ and you have now begun the install.

The install progress can be seen in the progress bar located at the top of the window. Towards
the middle is the status panel which shows what part of the install has been completed, is
Pending, Succeeded, or In Progress.

9	
	

The install has now finished.

Oracle Client is now installed and you can now click the ‘Exit’ button.

10	
	

Oracle Post Installation and configuration

The Oracle 12c Client has now been installed, but we must now configure it to connect to an
Oracle 12c database. To configure it you will need to follow these steps:

• The first step is to copy the tnsnames.ora file to the NETWORK directory in your client
installation. This text file holds all your connection aliases to your various databases.

In Oracle 12c database we will be running the SQL*Plus client for several of our SQL
queries/scripts, see below.

Microsoft	Windows	[Version	10.0.14393]	
(c)	2016	Microsoft	Corporation.	All	rights	reserved.	
	
C:\Users\Joseph>sqlplus	sys/PASSWORD@//localhost:1521/data16pr	as	sysdba	
	
SQL*Plus:	Release	12.1.0.2.0	Production	on	Fri	Jan	6	21:11:10	2017	
	
Copyright	(c)	1982,	2014,	Oracle.		All	rights	reserved.	
	

11	
	

	
	
Connected	to:	
Oracle	Database	12c	Enterprise	Edition	Release	12.1.0.2.0	-	64bit	Production	
With	the	Partitioning,	OLAP,	Advanced	Analytics	and	Real	Application	Testing	options	
	
SQL>	SHO	PDBS	
	
				CON_ID	CON_NAME																							OPEN	MODE		RESTRICTED	
----------	------------------------------	----------	----------	
									2	PDB$SEED																							READ	ONLY		NO	
									3	PHGSDATA																							MOUNTED	
									4	PDT16TST																							READ	WRITE	NO									5	ECOMDATA																							READ	WRITE	NO	
									6	MGENPICS																							MOUNTED	
									7	PDT16TST2																						MOUNTED	
SQL>	

12	
	

This ends the Software Installation prerequisites

13	
	

Installation of ROracle

The main web page for ROracle on the OTN web site is the page below, besides downloads
there is also other useful information, see the URL below.

In benchmark comparisons, ROracle performed up to 79 times faster than RJDBC and 2.5 times
faster than RODBC for reading data across a range of 1000 to 1 million rows, and 10 to 1000
columns. ROracle shows scalability across NUMBER, VARCHAR2, TIMESTAMP, and
BINARY_DOUBLE data types.

Similarly, for writing data to Oracle Database, ROracle was 61 times faster for 10 columns at 10
thousand rows than RODBC, and 630 times faster for the same data than RJDBC.

Here the ROracle page is divided into five tabs we want the downloads tab.

http://www.oracle.com/technetwork/database/database-technologies/r/roracle/downloads/index.html	

14	
	

Download the most current version of the ROracle package by clicking the download tab using
the zip hyperlink for ROarcle 1.3-1 see page below.

Here we will choose the Windows version and we will get the most current version which is the
file ROracle_1.3-1.zip. Here we will have to accept the license agreement and then click the zip
hyper link below the ROracle_1.3-1 heading and the download will proceed if it doesn’t, just do
it again.

The documentation tab is for downloading the documentation for this package, click the
documentation tab, see the URL below to go to that page.

http://www.oracle.com/technetwork/database/database-
technologies/r/roracle/documentation/index.html

There is only one file there and that is ROracle.pdf click the hyper link to begin downloading.
Create a work directory on your PC call it ROracle move the files into it. In order to install this
package bring up RStudio and we will run the command below.

The ‘install.packages’ command/function will need three pieces of information the path, the file
name and the other parameter will tell the function not to use a repository see below.

15	
	

Directory Parameter
This is the directory where you downloaded the ROracle to and where the other files you
downloaded are.

C:\DATATREE_NEW_HOME\R_ENTERPRISE\ROracle

Since one of the parameters is a directory path it will use escape characters, these will have to be
suppressed. The function will deal with a single escape character by giving you an error, see
below, except for the path which will be different.

>	install.packages("C:\DATATREE_NEW_HOME\R_ENTERPRISE\ROracle\ROracle_1.3-1.zip",	repos=NULL)	
Error:	'\D'	is	an	unrecognized	escape	in	character	string	starting	""C:\D"	

So the escape character ‘\’ will need to be doubled to ‘\\’ so that the ‘install.packages’
command/function will not give us an error. You will need to type a command like what you see
below, but your PATH will be different.

install.packages("C:\\DATATREE_NEW_HOME\\R_ENTERPRISE\\ROracle\\ROracle_1
.3-1.zip", repos=NULL)

We will run these commands in RStudio, the log below shows the results you will get.

R	version	3.3.1	(2016-06-21)	--	"Bug	in	Your	Hair"	
Copyright	(C)	2016	The	R	Foundation	for	Statistical	Computing	
Platform:	x86_64-w64-mingw32/x64	(64-bit)	
	
R	is	free	software	and	comes	with	ABSOLUTELY	NO	WARRANTY.	
You	are	welcome	to	redistribute	it	under	certain	conditions.	
Type	'license()'	or	'license()'	for	distribution	details.	
	
R	is	a	collaborative	project	with	many	contributors.	
Type	'contributors()'	for	more	information	and	
'citation()'	on	how	to	cite	R	or	R	packages	in	publications.	
	
Type	'demo()'	for	some	demos,	'help()'	for	on-line	help,	or	
'help.start()'	for	an	HTML	browser	interface	to	help.	
Type	'q()'	to	quit	R.	
	
[Workspace	loaded	from	~/.RData]	
	
>		
>	install.packages("C:\\DATATREE_NEW_HOME\\R_ENTERPRISE\\ROracle\\ROracle_1.3-1.zip",	
repos=NULL)	
Installing	package	into	‘C:/Users/Joseph/Documents/R/win-library/3.3’	
(as	‘lib’	is	unspecified)	

16	
	

The ROracle package has been successfully unpacked and MD5 sums checked

We have now installed the following software products:

• R version 3.2.2.
• RStudio 1.0.44.
• Oracle 12c Client (12.1.0.2) and configured it.
• ROracle 1.3-1 is installed as a package under the R language

You have now installed all the prerequisites and the Roracle package itself. Now we will need
to test it, for this you will need an Oracle database to connect to.

I will be using an Oracle 12c (12.1.0.2) database for this test. It has six pluggable databases on
it with various datasets we will try to connect to DATA16PR (CDB$ROOT) and PDT16TST
which has many data sets.

The image below is of a SQL*Plus windows prompt with the show pdbs command‘s output
showing this is where we will execute many of our SQL scripts.

The PATH should be set to include the path to the Oracle Client libraries. Oracle Universal
Installer should have set the PATH and ORACLE_HOME environment variables in the
registry database.

17	
	

Search for ‘Control Panel’ and you will see the screen listed below. Then select the ‘Advance
System Settings’ will get you to the Environmental Variables.

Select ‘Environment Variables’ and here we must create two new ones to locate the Oracle
OCI libraries under the Oracle 12c Client install directories.

Click the New button for ‘User variables for Joseph’ Joseph is the current user’s name.

18	
	

19	
	

Here we will create two variables they are OCI_INC and OCI_LIB64. When the ‘New User
Variable’ dialog comes up enter both the ‘Variable Name’ and ‘Variable Value’ then click the
OK button. The two values are listed below.

 set OCI_INC=C:\app\OraDt16\product\12.1.0\client_1\oci\include
 set OCI_LIB64= C:\app\OraDt16\product\12.1.0\client_1\bin

The two variables are listed below, when finished click OK.

 Load the library and use the package; you will have to change DBNAME to one of aliases listed
in your tnsnames.ora file, as in the following example I am using the database container
CDB$ROOT for my dbname of data16pr:

20	
	

Workspaces and the .RData file

The .RData binary file, what is it and how does it work in the R environment? This file holds all
the R objects that you create while you’re working in your R environment. The workspace is
your current R working environment and includes any user-defined objects (vectors, matrices,
data frames, lists, functions) that you have created. At the end of a R session, the user can either
save an image or not of the current workspace when prompted. This image is automatically
reloaded the next time R is started

The .RData file is an unusually interesting aspect of the R processing environment, because it
holds the workspace of the R environment and any objects created during your session are stored
there, but they are automatically compressed.

The image above lists the objects in the ‘Environment’ tab of RStudio, this lists all of the data
frames, vectors, matixes and variables defined in my R environment. There is one copy of the
yellow_taxi_trip_june_bk (allrecs) table that was copied from Oracle, two copies
RESTAURANT (Data6, Data8) also from Oracle and an assortment of other objects, which
makes up our workspace in R.

 The chart below uses as an example the yellow_taxi_trip_june_bk table that was copied from
Oracle to the .RData file this increased the file from 34998296 bytes to 437715551bytes in size.

 Size Rows Read

Time
Filename Compression

 Unzip’d 2.3976
GB

12332379 yellow_taxi_trip_june_bk.csv 0

Zip’d 338.798
MB

12332379 16.51
sec

yellow_taxi_trip_june_bk.7z 85.869%

.RData 417.4381
MB

12332379 yellow_taxi_trip_june_bk 82.589%

Oracle 3649MB 12332379 30.222
sec

yellow_taxi_trip_june_bk 0

21	
	

When we remove the yellow_taxi_trip_june_bk tables rows from R by equating the allrecs
variable to 1 the rows are dropped and when you exit RStudio the .RData file returns to the
34MB size, see below.

The .RData file compresses any data that is written to it as you can see from the above chart.
This compression is very similar to that done by 7zip or gzip. Next we will choose another
object, this time the RESTAURANT table from our Oracle database and the results are the same
it is compressed.

 Size Rows Read
Time

Filename Compression

Unzip’d 163,841,355
Bytes

433790 RESTAURANT_V7.csv 0

Zip’d 7,856,080
Bytes

433790 27 sec RESTAURANT_V7.7z 95.205%

.RData 16903.59
KB

433790 RESTAURANT 89.44 %

Oracle 376MB 433790 Sec RESTAURANT

Let’s look at what happens when we drop the records in the Data6 data.frame in the .RData file,
see below.

22	
	

Now you can see that the .RData file plays a very important role in R and that it can do even
more. If you want to extract large data sets from Oracle or any other database then storing it in
the .RData file for processing and modeling this is the way to go.

Mvbutils	package	

The mvbutils package has tools like cd () function which allows you to set up and move through
a hierarchically-organized set of R workspaces, each corresponding to a directory. While
working at any level of the hierarchy, all higher levels are attached on the search path. You can
easily switch between workspaces in the same session, you can move objects around in the
hierarchy, and you can do several hierarchy-wide things such as searching, even on parts of the
hierarchy that aren't currently attached.

R workspaces can become cluttered, so that it becomes very difficult to keep track of what's in
them. If you work on several different projects, it can be difficult to work out where to put things
or to remember where things are. If you just want to test out a bit of code without leaving
permanent clutter, but while still being able to "see" your important objects, how do you do
it? Cd helps with all such problems, by letting you organize all your projects into a single tree
structure, regardless of where they are stored on disk. Each workspace is referred to (for
historical reasons) as a "task".

There are two basic choices when you work with R, you keep everything you write in a text file
which you access every time you start; or you store all the objects in the R workspace as a binary
image in a .RData file. Some people prefer the text-based approach, but others including me
prefer the binary image approach; my reasons are that binary images let me organize my work
across tasks more systematically, and that repeated text-sourcing is much too slow when lengthy
analyses or data extractions are involved.

The cd system is really geared to the binary image model and, before cd moves to a new task,
either up or down the hierarchy, the current workspace is automatically saved to a binary image.
Nevertheless, I don't think cd is incompatible with other ways of working, as long as the
".RData" file (actually the tasks object) is not destroyed from session to session.

23	
	

At any rate, some people who work by sourcing large code files still seem to find cd useful; it's
even possible to use the .First.task feature to auto-load a task's source files into a text editor
when you cd to that task. With the .RData only approach, it is highly advisable to have some
way of keeping separate text backups, at least of function code. The fixr editing system is geared
up to this, and I presume other systems such as ESS are too.

To use the cd system, you will need to start R in the same workspace every time. This will
become your ROOT or home task, from which all other tasks stem. There need not be much in
this workspace except for an object called tasks (see below), though you can use it for shared
functions that you don't want to organize into a package. From the ROOT task, your first action
in a new R session will normally be to use cd to switch to a real task. The cd command is used
both to switch between existing tasks, and to create new ones.

Performance Test of the Database connection to the Oracle server

Now we will be exploring the DBI and ROracle interface by issuing a series of ROracle
commands which will submit SQL commands to the Oracle database. We will be benchmarking
the connection between RStudio and the Oracle 12c database by submitting the same query
from RStudio using ROracle commands and submitting the same SQL commands using SQL
Developer and SQL*Plus. On the SQL Developer and SQL*Plus we will use the following
commands:

1. set echo on;
2. set timing on;

On RStudio I will issue similar commands issuing the proc.time() function call before and after
my code block to get elapsed time to execute the statements.

Our test Data Sets
We will be using several data sets Restaurant inspection, Companies doing business in NYC,
and the Yellow Taxi trip data which are part of the NYC Open Data initiative see the URL’s
and descriptions below:

1) Yellow Taxi trip data 2015
We will be using Yellow Taxi trip data which is a GIS data set for the year 2015. This data set
has data for 2015 for NYC from January through June of that year. The table has over 78 million
records and is 11 GB in size before it was up loaded into Oracle. This took 2 hours and 24
minutes.

URL: https://data.cityofnewyork.us/Transportation/2015-Yellow-Taxi-Trip-Data/ba8s-jw6u

24	
	

This dataset includes trip records from all trips completed by yellow taxis from in NYC from
January to June in 2015. Records include fields capturing pick-up and drop-off dates/times,
pick-up and drop-off locations, trip distances, itemized fares, rate types, payment types, and
driver-reported passenger counts. The data used in the attached datasets were collected and
provided to the NYC Taxi and Limousine Commission (TLC) by technology providers
authorized under the Taxicab Passenger Enhancement Program (TPEP). The trip data was not
created by the TLC, and TLC makes no representations as to the accuracy of these data.

2) DOHMH New York City Restaurant Inspection Results Health
This dataset provides restaurant inspections, violations, grades and adjudication information

URL: https://data.cityofnewyork.us/browse?category=Health

The dataset contains every sustained or not yet adjudicated violation citation from every full or
special program inspection conducted up to three years prior to the most recent inspection for
restaurants and college cafeterias in an active status on the RECORD DATE (date of the data
pull). When an inspection results in more than one violation, values for associated fields are
repeated for each additional violation record. Establishments are uniquely identified by their
CAMIS (record ID) number. Keep in mind that restaurants go in and out of business; only
restaurants in an active status are included in the dataset.

Records are also included for each restaurant that has applied for a permit but has not yet been
inspected and for inspections resulting in no violations. Establishments with inspection date of
1/1/1900 are new establishments that have not yet received a full inspection. Restaurants that
received no violations are represented by a single row and coded as having no violations using
the ACTION field.

Programming Logic

We will be benchmarking both R and SQL programs which will be performing the same queries
on the data set tables which we have loaded into Oracle from the NYC Open Data initiative. I
will be timing each programs and checking the run times for comparison. In addition, we will be
testing joins and rollups of the data from other tables. Also we will use analytic functions and all
queries will be run with and without indexes.

With no indexes:

1) Our first test is to select one months’ worth of data from the YELLOW_TAXI_TRIP
table and fetch it into the RStudio side as a data.frame and then create an Oracle table
were you can write it back into a table using only R. We also do the same using SQL and
SQL*Plus and benchmark both experiments.

2) Next we will perform several joins

25	
	

This is for testing the database connection for tables with no indexes. For the first two tests, we
are connecting to the container database so there is no change in the connect string from how you
would connect to an Oracle 11g database, see connect string below.

 library('ROracle')
 drv <- dbDriver("Oracle")

#sample connect command
con <- dbConnect(drv, "USERNAME", "PASSWORD", dbname='DBNAME')

real connect commad
 con <- dbConnect(drv, "system ", "PASSWORD", dbname='data16pr')

The dbConnect function call has spaces in both the ID and the password which gives you an
error see below.

> con <- dbConnect(drv, " system ", " PASSWORD", dbname=' data16pr')
Error in .oci.Connect(.oci.drv(), username = username, password = password, :
 ORA-01017: invalid username/password; logon denied
>

>
> library('ROracle')
> drv <- dbDriver("Oracle")
>
> con <- dbConnect(drv, "system ", " PASSWORD", dbname='data16pr')
>

 To test the connection to the Oracle 12c database by reading a Oracle table:

Test 1: In our test we will use the dbReadTable() function, which can be used to read whatever
is in the table DUAL.
dbReadTable(con, 'DUAL')

>
> library('ROracle')
> drv <- dbDriver("Oracle")
>
> con <- dbConnect(drv, "system", "PASSWORD", dbname='data16pr')
>
> dbReadTable(con, 'DUAL')
 DUMMY
1 X
>
>

26	
	

Lets use the dbReadTable() function to read what is in the view V$PDBS which is a more
interesting output.

dbReadTable(con, 'V$PDBS')

dbReadTable(con, 'V$PDBS')
 CON_ID DBID CON_UID
1 2 369848507 369848507
2 3 1769860667 1769860667
3 4 2647541362 2052914599
4 5 1132693728 1132693728
5 6 2975992775 2975992775
6 7 2938944833 2938944833
 GUID NAME
1 4f, 24, fe, dc, 9e, 82, 4f, 44, 95, 1d, 1e, a4, 9c, 42, ff, 4e PDB$SEED
2 72, 19, 85, 7a, 52, ab, 4c, 13, ac, 78, ad, 59, bc, 58, f3, 6e PHGSDATA
3 ca, d5, c4, e6, 39, a5, 49, 1f, 83, b0, 4b, a6, 67, 11, 40, 38 PDT16TST
4 7d, eb, c2, 1e, ce, 15, 45, 49, bb, 39, 31, 3d, 18, 0c, 96, 7f ECOMDATA
5 0f, a5, f4, b5, e4, 24, 45, c9, 9c, 86, c1, f6, b6, 7a, a4, e2 MGENPICS
6 fe, 04, 38, b2, f7, f0, 49, 14, a2, 7a, cc, 10, 7d, 51, 2b, dd PDT16TST2
 OPEN_MODE RESTRICTED OPEN_TIME CREATE_SCN TOTAL_SIZE BLOCK_SIZE
1 READ ONLY NO 2016-12-25 21:24:49 2233966 796917760 8192
2 MOUNTED <NA> <NA> 3434346 0 8192
3 READ WRITE NO 2016-12-27 21:43:26 3443508 8113487872 8192
4 READ WRITE NO 2016-12-27 21:44:33 3460730 1390411776 8192
5 MOUNTED <NA> <NA> 3538655 0 8192
6 MOUNTED <NA> <NA> 5891656 0 8192
 RECOVERY_STATUS SNAPSHOT_PARENT_CON_ID
1 ENABLED 0
2 ENABLED 0
3 ENABLED 0
4 ENABLED 0
5 ENABLED 0
6 ENABLED 0

Connecting to a Pluggable database

Connecting to a pluggable database is different than connecting to an Oracle 12c container or to
an Oracle 11g database for one the dbname connect string is different see below. For one the
host name the port and the pluggable database name must be provided, in our case it’s
‘pdt16tst’. The host is ‘localhost’ since the database is on the same PC as the RStudio and port
is the default port ‘1521’. We also have some other parameters as follows:

• bulk_read is the size of the read cash the default is 1000, the
• bulk_write is the size of the write cash it has a default value 1000,
• stmt_cache is set to 0 so no statements will be kept in memory.
• externa_credentials if your logging in from a remote database.
• sysdba is if you are logging in with the SYSDBA role.

27	
	

library('ROracle')

drv <- dbDriver("Oracle")

This is the full connect for PDB 'pdt16tst' as you can see it's different

ptm <- proc.time()

con <- dbConnect(drv, "searstgi_admin", "5933tgi", dbname='//localhost:1521/pdt16tst',
prefetch = FALSE, bulk_read = 1000L, bulk_write = 1000L, stmt_cache =
0L,external_credentials = FALSE, sysdba = FALSE)

proc.time() - ptm

To check how much time our tests use, we will be using the proc.time() function, this function
determines how much real CPU time in seconds the currently running R process has already
taken.

The proc.time function returns five elements for backwards compatibility, but its print method
prints a named vector of length 3. The first two entries are the total user and system CPU
times of the current R process and any child processes on which it has waited, and the third entry
is the ‘real’ elapsed time since the process was started.

Test 2: Agregate the record count by month for the YELLOW_TAXI_TRIP .

In RStudio
2/9/17
>
>
> ptm <- proc.time()
> rs <- dbSendQuery(con, "SELECT EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME) AS TMONTH, C
OUNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_TRIP GROUP BY EXTRACT(MONTH FROM TPEP_PICKUP_DA
TETIME)")
> proc.time() - ptm
 user system elapsed
 0.01 0.02 0.04
>
>
>
>
> ptm <- proc.time()
>
> fetch(rs)
 TMONTH COUNT(*)
1 1 12741017
2 6 12332380
3 2 12442388
4 4 13063760
5 5 13158079
6 3 13342951

28	
	

>
> proc.time() - ptm
 user system elapsed
 0.02 0.00 198.38
>
>

2/8/17
>
> ptm <- proc.time()
>
> rs <- dbSendQuery(con, "SELECT EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME) AS TMONTH, CO
UNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_TRIP GROUP BY EXTRACT(MONTH FROM TPEP_PICKUP_DATE
TIME)")
>
> proc.time() - ptm
 user system elapsed
 0 0 0
>
> ptm <- proc.time()
>
> fetch(rs)
> proc.time() – ptm

 TMONTH COUNT(*)
1 1 12741017
2 6 12332380
3 2 12442388
4 4 13063760
5 5 13158079
6 3 13342951
> proc.time() - ptm
 user system elapsed
 0.00 0.00 389.82
>
>

In SQL Developer 4.15 we will execute the same query, see below:
2/9/17

set echo on;
set timing on;

SELECT EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME) AS TMONTH,
COUNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_TRIP GROUP BY
EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME);

29	
	

All Rows Fetched: 6 in 220.094 seconds

1 12741017
6 12332380
2 12442388
4 13063760
5 13158079
3 13342951

2/8/17

set echo on;
set timing on;

SELECT EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME) AS TMONTH,
COUNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_TRIP GROUP BY
EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME);

All Rows Fetched: 6 in 262.229 seconds

1 12741017
6 12332380
2 12442388
4 13063760
5 13158079
3 13342951

-- ###
-- 2/6/2017 9:21pm
Test 3: This query counts how many records are in the YELLOW_TAXI_JUNE table.

In SQL Developer.

set echo on;
set timing on;

SELECT COUNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_JUNE;
All Rows Fetched: 1 in 56.187 seconds
24664760

In RStudio.

 ptm <- proc.time()

 rs <- dbSendQuery(con, "SELECT COUNT(*) FROM
SEARSTGI_ADMIN.YELLOW_TAXI_JUNE")

30	
	

 ## We now fetch records from the resultSet into a data.frame.
proc.time() - ptm

ptm <- proc.time()

 data <- fetch(rs) ## extract all rows

 dim(data)
proc.time() – ptm

> ptm <- proc.time()
>
> rs <- dbSendQuery(con, "SELECT COUNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_JUN
E")
>
> ## We now fetch records from the resultSet into a data.frame.

> proc.time() - ptm
 user system elapsed
 0.00 0.00 0.01
>
> ptm <- proc.time()
>
> data <- fetch(rs) ## extract all rows
>
> dim(data)
[1] 1 1
> proc.time() - ptm
>
> dim(data)
[1] 1 1
> proc.time() - ptm
 user system elapsed
 0.00 0.00 53.48
> data
 COUNT(*)
1 24664760

Test 4: This test is in SQL Developer to read from the database and create a copy of a table
using a CTAS.
For RStudio the code reads the same table in Oracle and writes it to the ‘.RData‘ file and in
every case is faster or the same.
This result is very interesting since it means that the ‘.RData‘ is faster than the database on
writes. This is a consistent result when no matter what query I run it’s faster.

set echo on;
set timing on;

31	
	

CREATE TABLE RESTAURANT_CP3
AS
SELECT * FROM SEARSTGI_ADMIN.RESTAURANT;

Task completed in 60.545 seconds

SQL> set echo on
SQL> set timing on
SQL> CREATE TABLE RESTAURANT_CP3
AS
SELECT * FROM SEARSTGI_ADMIN.RESTAURANT;

Table RESTAURANT_CP3 created.

Elapsed: 00:00:50.915

 ptm <- proc.time()
 rs <- dbSendQuery(con, "select * from searstgi_admin.restaurant")

 ## We now fetch records from the resultSet into a data.frame.

 Data8 <- fetch(rs) ## extract all rows

 dim(data)
 proc.time() - ptm

2/9/17

> Data8 <- fetch(rs) ## extract all rows
>
> dim(data)
[1] 1 1
> proc.time() - ptm
 user system elapsed
 2.14 0.30 4.20
>

2/8/17

>
> ptm <- proc.time()
> rs <- dbSendQuery(con, "select * from searstgi_admin.restaurant")
>
> ## We now fetch records from the resultSet into a data.frame.
>
> Data6 <- fetch(rs) ## extract all rows
>
> dim(data)
[1] 1 1
> proc.time() - ptm
 user system elapsed

32	
	

 2.15 0.25 6.77
>

Test 5: When writing to the database there is no significant difference between RStudio and
SQL Developer the results are consistent.

CREATE TABLE SEARSTGI_ADMIN.YELLOW_TAXI_JUNE
AS
SELECT * FROM SEARSTGI_ADMIN.YELLOW_TAXI_TRIP WHERE
EXTRACT(MONTH FROM TPEP_PICKUP_DATETIME) = 6;

Table SEARSTGI_ADMIN.YELLOW_TAXI_JUNE created.

815.164 seconds

This error occurred because two fields in the “YELLOW_TAXI_JUNE” are formatted as
timestamps. Which creates this error when the data is written back to the database.

> ptm <- proc.time()
>
> ##dbWriteTable(conn, "ORACLE_DB_TABLE", r_data_table, overwrite = F, append
= T, row.names = F)
> dbWriteTable(con, "YELLOW_TAXI_JUNE", allrecs, overwrite = FALSE, append=TR
UE, row.names = F, schema="SEARSTGI_ADMIN")
Error in .oci.WriteTable(conn, name, value, row.names = row.names, overwrite
= overwrite, :
 Error in .oci.ValidateZoneInEnv(FALSE) :
 environment variable 'ORA_SDTZ()' must be set to the same time zone region
as the the environment variable 'TZ()'
>
> proc.time() - ptm
 user system elapsed
 0.01 0.07 0.14
>
>

This error is caused by having timestamp fields in the data. By changing the TZ and the
ORS_SDTZ values to “GMT” this issue can be resolved, see below.

>
>
> ptm <- proc.time()
>
> Sys.setenv(TZ = "GMT")
> Sys.setenv(ORA_SDTZ = "GMT")
>
> proc.time() - ptm
 user system elapsed
 0.00 0.00 0.03
>
> ptm <- proc.time()

33	
	

>
> ##dbWriteTable(conn, "ORACLE_DB_TABLE", r_data_table, overwrite = F, append = T, row.n
ames = F)
> dbWriteTable(con, "YELLOW_TAXI_JUNE", allrecs, overwrite = FALSE, append=TRUE, row.nam
es = F, schema="SEARSTGI_ADMIN")
[1] TRUE
>
> proc.time() - ptm
 user system elapsed
 51.35 9.53 816.10
>
>

set echo on;

set timing on;

SELECT COUNT(*) FROM SEARSTGI_ADMIN.YELLOW_TAXI_JUNE;

All Rows Fetched: 1 in 86.187 seconds

24664760

Details
dbDriver This object is a singleton, that is, subsequent invocations of dbDriver return the same
initialized object.
This implementation allows you to connect to multiple host servers and run multiple connections
on each server simultaneously. When interruptible is set to TRUE, it allows for interrupting
long-running queries on the server by executing the query in a thread. Main thread checks for
Ctrl-C and issues OCIBreak/OCIReset to cancel the operation on the server. By default,
interruptible is FALSE. When unicode_as_utf8 is set to FALSE, NCHAR, NVARCHAR and
NCLOB data is fetched using the character set specified by the NLS_LANG setting. By default,
unicode_as_utf8 is set to TRUE. When ora.attributes is set to TRUE, the result set from
dbGetQuery and fetch contains DBMS-specific attributes like ora.encoding, ora.type, and
ora.maxlength for the corresponding column.
dbUnloadDriver This implementation removes communication links between the R client and
the database. It frees all connections and all result sets associated with those connection objects.
dbDriver An object OraDriver or ExtDriver whose class extends DBIDriver. This object
is used to create connections, using the function dbConnect, to one or more Oracle Database
engines.
dbUnloadDriver Free all resources occupied by the driver object.
dbDriver The R client part of the database communication is initialized, but note that
connecting to the database engine needs to be done through calls to dbConnect.
dbUnloadDriver Remove the communication link between the R client and the database.

