
1 of 41

Dev 2.0:
Living in the World of APIs

Grigoriy Novikov, Michael Rosenblum
www.dulcian.com

June 5, 2019

2 of 41

OCA with 15+ years in Oracle development
Areas of responsibility
 Technical Leader for multiple HIPAA SaaS products
 Participated in many government projects

Loves new projects!

Who Am I? – “Grisha”
(aka Grigoriy Novikov)

3 of 41

Who Am I? – “Misha”
(aka Michael Rosenblum)

Oracle ACE
Co-author of 3 books
PL/SQL for Dummies
Expert PL/SQL Practices
Oracle PL/SQL Performance Tuning Tips & Techniques

Known for:
SQL and PL/SQL tuning
Complex functionality
 Code generators
 Repository-based development

4 of 41

APIs

 Application Programming Interface:
Definition: Set of clearly defined methods of communication

among various components
 Introduced: 1968 and (ab)used ever since

5 of 41

APIs?

 You can call them SOA/Micro-Services/new buzzword
… but they are somebody’s tool being used by somebody else
 Crossing boundaries is the key!

 Crossing boundaries always means crossing areas of
responsibility
… but every issue should have a name assigned to it
 Higher management/control requirements

6 of 41

APIs…

 More involved parties = more “blame game”
… so, backside covering is the most critical survivability factor

 Service Level Agreements (SLA) are written by lawyers
for lawyers.
… so, normal techies rarely understand what is/is not covered

 Efficiency is often the first victim of being “bullet-proof”
… so, performance tuning is viewed as an afterthought.

7 of 41

APIs!

 System tuning in any API-based system is very complex
… and often involves direct management intervention.

 You cannot build contemporary systems without APIs
… because too many moving parts are involved.

 API-based systems have to be properly built from the very
beginning
… since architectural solutions are always more efficient than

purely technical ones.

8 of 41

So?

 This presentation IS NOT about:
Finding “_RUN_FAST=TRUE” somewhere in undocumented

list of parameters
Writing the most efficient APIs ever invented

This presentation IS about:
Finding and solving real-world challenges of API-based systems
Making your system architecture API-friendly
Surviving when your system depends upon others

9 of 41

Real World System Example

10 of 41

About the System

Seamless integration with EHR
Provides additional functionality
Implemented as a Google
Chrome Extension
API and SSO
Oracle + Formspider IDE

11 of 41

System Statistics

400,000+ API calls per day
~50 API calls per second during peak hours
~20 API calls per second (usual workload)
~1,000 active users every day
~500 active simultaneous logical sessions
~40 app server requests per second

12 of 41

System Structure

Application server
 2 CPU
 8 GB RAM

Database Server
 4 CPU
 16 GB RAM

Stateless architecture

13 of 41

Stateless Architecture

Core concept:
“Session” = set of activities between logon and logoff.

Problem:
Rules applicable to 100 connections didn’t work for 100,000

connections.
Alternative:
 Introduce logical/physical session separation

14 of 41

Why bother?

StateFULL Architecture
Logical session = Physical

session
… meaning lots and lots of

database connections
(irrelevant whether anything
happens) 
 Risk: idle hardware
 Benefit: predictability

StateLESS Architecture
1 Logical session = 1..*

Physical Session
… meaning database

connections are opened only as
needed (to serve requests) 
 Risk: workload peaks
 Benefit: cost efficiency

15 of 41

System Architecture

16 of 41

Real Use Cases!

17 of 41

Dealing with Volume
Data model
API footprints
Some tips

Volume
How much is enough?

Hashing
Save on resources

Inactive clients
Regulations and contracts

18 of 41

Dealing with Volume: Data Model
Data model – store all fingerprints

19 of 41

Dealing with Volume: Data Model (2)
Request
 Web service method (GET, PUT, POST…)
 Endpoint
 All parameters including binary data
 Timestamp
 Environment (DEV, TEST, DEMO, PROD)

Response
 Full response
 Response code
 Timestamp
 Error (API vs. System)

20 of 41

Dealing with Volume: Data Model (3)

Tokens
API provider-specific
Client specific

TIP: Store the last response separately (and associated
with the core object)

21 of 41

Dealing with Volume: Use Case 1
How much data do you really need?
 Let’s grab it. We’ll decide later what to do.

Original solution:
 Request data from external source as much as possible
 Synchronize your system with external source

Pros:
 All data up-to-date (almost)
 Users run the reports in your system

Cons:
 A lot of API calls (and $$$)
 You will always be one (or more) steps behind
 Room for errors

22 of 41

Dealing with Volume: Use Case 1 (cont.)
Optimized solution
Request data only for objects of interest
Keep only important data synchronized

Pros
Fewer API calls
Smaller workload (and less $$)

Cons
You are still one (or more) steps behind
Room for errors

23 of 41

Dealing with Volume: Use Case 2

Can we go even further?
Response can be quite complex

Hash and cache the response
update t_responseHash
set hash_tx = hash(response_object)…

Calculate response hash and compare with previous one
Be aware of the response timestamp

24 of 41

Dealing with Volume: Use Case 2 (cont)
Ask/Check for last_updated
Be aware
Watch for complex responses
{
"patient":12345,
"first_name":"John",
"last_name":"Doe",
"insurances":[{***},{***}....],
"claims":[{***},{***}....],
"last_updated":"2019-02-21T13:28:06.419Z"

}

Need to test a lot

25 of 41

Dealing with Volume: Use Case 2 (cont.)

Can we reduce workload further?
Check for API filter parameters (active, start and end date, etc)

 https://api.provider.com/v1/patients/?active=true&balance=true

 Do not see one? Log an enhancement request
Do not store if you do not need it

26 of 41

Dealing with Volume: Use Case 3

The Timer must not pop up on certain pages.
Original solution:
Repository-based system
Business rules in the database
Many round trips
 Increased traffic and workload (and $$$)
Poor user experience

27 of 41

Dealing with Volume: Use Case 3 (cont.)

Optimized solution:
Still a repository-based system
Read the settings and delegate some processing to the client

box
50x fewer round trips
Reduced traffic and workload (and $)
“Your system works much faster.”

28 of 41

Dealing with Volume: Use Case 4
How critical is it to keep data synchronized?
Update data overnight
Update on demand
Update while object is still an object of interest

Immediate updates vs. data warehouse
 Important changes – demog, insurance, etc.
Can it wait? – Staff performance reports

Daily/weekly/weekend updates

29 of 41

Dealing with Volume: Use Case 4 (cont.)
Exclude inactive clients
Retention period
Regulations

Delete old data
Watch for SQL execution plans
Rebuild indexes

Ask for API “GET /changed”
Less workload for API provider
Less workload for you

30 of 41

Handling Errors (1)
Many points of failure in the architecture
Network errors vs. API errors
Some API errors are OK:
GET /patient/9999
200 OK {“error”: “No patient found”}
404 Not Found {“error”: “No patient found”}

Be aware
Read the documentation – one error code, multiple meanings
API provider’s default error, i.e. “404 Not Found ”

31 of 41

Handling Errors (2)

Why is there a 504 Gateway_Timeout?
Did you ask for the entire data set?
Narrow your search results
Break down to X number of calls
Find the timeout cutoff

32 of 41

Handling Errors (3)
 Log the error and repeat
request_attempt_nr := 0;
request_success := FALSE;
WHILE request_attempt_nr <= max_request_attempt_nr

AND request_success = FALSE
LOOP

BEGIN
<API request>
request_success := TRUE;

EXCEPTION
WHEN OTHERS THEN

<log error>
IF begin_request_attempt_nr = max_request_attempt_nr THEN

raise;
END IF;

END;
request_attempt_nr := request_attempt_nr + 1;

END LOOP;

33 of 41

Testing (1)
Do not trust the API provider
Everyone makes mistakes.

Look for:
API changes (without prior notice!)
 “…It was a quick emergency fix for a specific client”

Data structure changes
Domain/Lookup changes

Implement automatic testing
Determine the official maintenance window

34 of 41

Testing (2)

Prepare “perfect” set
What is your “happy day scenario”

Check API responses against the “perfect” set
Watch for response timestamp attribute

Look for new/removed data elements
Find delta

Ask for metadata/configuration API
 https://api.provider.com/v1/chart/configuration/socialhistory

35 of 41

Testing (3)

Ask for the release notes
… hopefully, PRIOR to the release!

What if there are no API changes?
You must test - no matter what!
API developers and system developers – two different teams

Watch for
Performance
Missing data

36 of 41

Debugging

Get your own “playground”
Keep your own log (both requests and responses)
Add new parameter: your_request_id=1234
 https://api.provider.com/v1/patients/?active=true
&request_id=1234

Report bugs
Replicate in TEST and PROD
API provider will be happy.

Provide use cases to support your requests!

37 of 41

Coordinating

Suggest enhancements
Engage your clients
Calculate ROI

HIPAA-compliance
Watch for logs and screenshots

38 of 41

Backup plan

Show must go on
Users do not care if APIs are down (they do not even know

what API is)
Check if a backup endpoints are available
Automatic and manual switch

Allow manual entry with appropriate logging
Report the issue with the Highest priority ASAP
API provider must know your users work 24x7

39 of 41

Health Checks

Total API calls
Make sure you know the cutoff timestamp
API calls per second
API calls per “client”
Know your daily and per-second limits
Group by response code
Find anomalies

40 of 41

Summary
An efficient API-based system involves:
1. Communication
 … because when lots of people are involved – something will be “lost

in translation”
2. Being reasonably paranoid
 … because everything that CAN change at some point MAY change

3. Keeping ALL records
 … because before blaming somebody else you should have proof!

4. Holding your ground
 … because everybody should be “not guilty” until proven otherwise

41 of 41

Contact Information
Michael Rosenblum – mrosenblum@dulcian.com
 Grigoriy Novikov - gnovikov@dulcian.com
 Dulcian, Inc. website - www.dulcian.com

	�Dev 2.0: �Living in the World of APIs
	Slide Number 2
	Who Am I? – “Misha” �(aka Michael Rosenblum)
	APIs
	APIs?
	APIs…
	APIs!
	So?
	Slide Number 9
	About the System
	System Statistics
	System Structure
	Stateless Architecture
	Why bother?
	System Architecture
	Slide Number 16
	Dealing with Volume
	Dealing with Volume: Data Model
	Dealing with Volume: Data Model (2)
	Dealing with Volume: Data Model (3)
	Dealing with Volume: Use Case 1
	Dealing with Volume: Use Case 1 (cont.)
	Dealing with Volume: Use Case 2
	Dealing with Volume: Use Case 2 (cont)
	Dealing with Volume: Use Case 2 (cont.)
	Dealing with Volume: Use Case 3
	Dealing with Volume: Use Case 3 (cont.)
	Dealing with Volume: Use Case 4
	Dealing with Volume: Use Case 4 (cont.)
	Handling Errors (1)
	Handling Errors (2)
	Handling Errors (3)
	Testing (1)
	Testing (2)
	Testing (3)
	Debugging
	Coordinating
	Backup plan
	Health Checks
	Summary
	Contact Information

