
1 of 41

Dev 2.0:
Living in the World of APIs

Grigoriy Novikov, Michael Rosenblum
www.dulcian.com

June 5, 2019

2 of 41

OCA with 15+ years in Oracle development
Areas of responsibility
 Technical Leader for multiple HIPAA SaaS products
 Participated in many government projects

Loves new projects!

Who Am I? – “Grisha”
(aka Grigoriy Novikov)

3 of 41

Who Am I? – “Misha”
(aka Michael Rosenblum)

Oracle ACE
Co-author of 3 books
PL/SQL for Dummies
Expert PL/SQL Practices
Oracle PL/SQL Performance Tuning Tips & Techniques

Known for:
SQL and PL/SQL tuning
Complex functionality
 Code generators
 Repository-based development

4 of 41

APIs

 Application Programming Interface:
Definition: Set of clearly defined methods of communication

among various components
 Introduced: 1968 and (ab)used ever since

5 of 41

APIs?

 You can call them SOA/Micro-Services/new buzzword
… but they are somebody’s tool being used by somebody else
 Crossing boundaries is the key!

 Crossing boundaries always means crossing areas of
responsibility
… but every issue should have a name assigned to it
 Higher management/control requirements

6 of 41

APIs…

 More involved parties = more “blame game”
… so, backside covering is the most critical survivability factor

 Service Level Agreements (SLA) are written by lawyers
for lawyers.
… so, normal techies rarely understand what is/is not covered

 Efficiency is often the first victim of being “bullet-proof”
… so, performance tuning is viewed as an afterthought.

7 of 41

APIs!

 System tuning in any API-based system is very complex
… and often involves direct management intervention.

 You cannot build contemporary systems without APIs
… because too many moving parts are involved.

 API-based systems have to be properly built from the very
beginning
… since architectural solutions are always more efficient than

purely technical ones.

8 of 41

So?

 This presentation IS NOT about:
Finding “_RUN_FAST=TRUE” somewhere in undocumented

list of parameters
Writing the most efficient APIs ever invented

This presentation IS about:
Finding and solving real-world challenges of API-based systems
Making your system architecture API-friendly
Surviving when your system depends upon others

9 of 41

Real World System Example

10 of 41

About the System

Seamless integration with EHR
Provides additional functionality
Implemented as a Google
Chrome Extension
API and SSO
Oracle + Formspider IDE

11 of 41

System Statistics

400,000+ API calls per day
~50 API calls per second during peak hours
~20 API calls per second (usual workload)
~1,000 active users every day
~500 active simultaneous logical sessions
~40 app server requests per second

12 of 41

System Structure

Application server
 2 CPU
 8 GB RAM

Database Server
 4 CPU
 16 GB RAM

Stateless architecture

13 of 41

Stateless Architecture

Core concept:
“Session” = set of activities between logon and logoff.

Problem:
Rules applicable to 100 connections didn’t work for 100,000

connections.
Alternative:
 Introduce logical/physical session separation

14 of 41

Why bother?

StateFULL Architecture
Logical session = Physical

session
… meaning lots and lots of

database connections
(irrelevant whether anything
happens)
 Risk: idle hardware
 Benefit: predictability

StateLESS Architecture
1 Logical session = 1..*

Physical Session
… meaning database

connections are opened only as
needed (to serve requests)
 Risk: workload peaks
 Benefit: cost efficiency

15 of 41

System Architecture

16 of 41

Real Use Cases!

17 of 41

Dealing with Volume
Data model
API footprints
Some tips

Volume
How much is enough?

Hashing
Save on resources

Inactive clients
Regulations and contracts

18 of 41

Dealing with Volume: Data Model
Data model – store all fingerprints

19 of 41

Dealing with Volume: Data Model (2)
Request
 Web service method (GET, PUT, POST…)
 Endpoint
 All parameters including binary data
 Timestamp
 Environment (DEV, TEST, DEMO, PROD)

Response
 Full response
 Response code
 Timestamp
 Error (API vs. System)

20 of 41

Dealing with Volume: Data Model (3)

Tokens
API provider-specific
Client specific

TIP: Store the last response separately (and associated
with the core object)

21 of 41

Dealing with Volume: Use Case 1
How much data do you really need?
 Let’s grab it. We’ll decide later what to do.

Original solution:
 Request data from external source as much as possible
 Synchronize your system with external source

Pros:
 All data up-to-date (almost)
 Users run the reports in your system

Cons:
 A lot of API calls (and $$$)
 You will always be one (or more) steps behind
 Room for errors

22 of 41

Dealing with Volume: Use Case 1 (cont.)
Optimized solution
Request data only for objects of interest
Keep only important data synchronized

Pros
Fewer API calls
Smaller workload (and less $$)

Cons
You are still one (or more) steps behind
Room for errors

23 of 41

Dealing with Volume: Use Case 2

Can we go even further?
Response can be quite complex

Hash and cache the response
update t_responseHash
set hash_tx = hash(response_object)…

Calculate response hash and compare with previous one
Be aware of the response timestamp

24 of 41

Dealing with Volume: Use Case 2 (cont)
Ask/Check for last_updated
Be aware
Watch for complex responses
{
"patient":12345,
"first_name":"John",
"last_name":"Doe",
"insurances":[{***},{***}....],
"claims":[{***},{***}....],
"last_updated":"2019-02-21T13:28:06.419Z"

}

Need to test a lot

25 of 41

Dealing with Volume: Use Case 2 (cont.)

Can we reduce workload further?
Check for API filter parameters (active, start and end date, etc)

 https://api.provider.com/v1/patients/?active=true&balance=true

 Do not see one? Log an enhancement request
Do not store if you do not need it

26 of 41

Dealing with Volume: Use Case 3

The Timer must not pop up on certain pages.
Original solution:
Repository-based system
Business rules in the database
Many round trips
 Increased traffic and workload (and $$$)
Poor user experience

27 of 41

Dealing with Volume: Use Case 3 (cont.)

Optimized solution:
Still a repository-based system
Read the settings and delegate some processing to the client

box
50x fewer round trips
Reduced traffic and workload (and $)
“Your system works much faster.”

28 of 41

Dealing with Volume: Use Case 4
How critical is it to keep data synchronized?
Update data overnight
Update on demand
Update while object is still an object of interest

Immediate updates vs. data warehouse
 Important changes – demog, insurance, etc.
Can it wait? – Staff performance reports

Daily/weekly/weekend updates

29 of 41

Dealing with Volume: Use Case 4 (cont.)
Exclude inactive clients
Retention period
Regulations

Delete old data
Watch for SQL execution plans
Rebuild indexes

Ask for API “GET /changed”
Less workload for API provider
Less workload for you

30 of 41

Handling Errors (1)
Many points of failure in the architecture
Network errors vs. API errors
Some API errors are OK:
GET /patient/9999
200 OK {“error”: “No patient found”}
404 Not Found {“error”: “No patient found”}

Be aware
Read the documentation – one error code, multiple meanings
API provider’s default error, i.e. “404 Not Found ”

31 of 41

Handling Errors (2)

Why is there a 504 Gateway_Timeout?
Did you ask for the entire data set?
Narrow your search results
Break down to X number of calls
Find the timeout cutoff

32 of 41

Handling Errors (3)
 Log the error and repeat
request_attempt_nr := 0;
request_success := FALSE;
WHILE request_attempt_nr <= max_request_attempt_nr

AND request_success = FALSE
LOOP

BEGIN
<API request>
request_success := TRUE;

EXCEPTION
WHEN OTHERS THEN

<log error>
IF begin_request_attempt_nr = max_request_attempt_nr THEN

raise;
END IF;

END;
request_attempt_nr := request_attempt_nr + 1;

END LOOP;

33 of 41

Testing (1)
Do not trust the API provider
Everyone makes mistakes.

Look for:
API changes (without prior notice!)
 “…It was a quick emergency fix for a specific client”

Data structure changes
Domain/Lookup changes

Implement automatic testing
Determine the official maintenance window

34 of 41

Testing (2)

Prepare “perfect” set
What is your “happy day scenario”

Check API responses against the “perfect” set
Watch for response timestamp attribute

Look for new/removed data elements
Find delta

Ask for metadata/configuration API
 https://api.provider.com/v1/chart/configuration/socialhistory

35 of 41

Testing (3)

Ask for the release notes
… hopefully, PRIOR to the release!

What if there are no API changes?
You must test - no matter what!
API developers and system developers – two different teams

Watch for
Performance
Missing data

36 of 41

Debugging

Get your own “playground”
Keep your own log (both requests and responses)
Add new parameter: your_request_id=1234
 https://api.provider.com/v1/patients/?active=true
&request_id=1234

Report bugs
Replicate in TEST and PROD
API provider will be happy.

Provide use cases to support your requests!

37 of 41

Coordinating

Suggest enhancements
Engage your clients
Calculate ROI

HIPAA-compliance
Watch for logs and screenshots

38 of 41

Backup plan

Show must go on
Users do not care if APIs are down (they do not even know

what API is)
Check if a backup endpoints are available
Automatic and manual switch

Allow manual entry with appropriate logging
Report the issue with the Highest priority ASAP
API provider must know your users work 24x7

39 of 41

Health Checks

Total API calls
Make sure you know the cutoff timestamp
API calls per second
API calls per “client”
Know your daily and per-second limits
Group by response code
Find anomalies

40 of 41

Summary
An efficient API-based system involves:
1. Communication
 … because when lots of people are involved – something will be “lost

in translation”
2. Being reasonably paranoid
 … because everything that CAN change at some point MAY change

3. Keeping ALL records
 … because before blaming somebody else you should have proof!

4. Holding your ground
 … because everybody should be “not guilty” until proven otherwise

41 of 41

Contact Information
Michael Rosenblum – mrosenblum@dulcian.com
 Grigoriy Novikov - gnovikov@dulcian.com
 Dulcian, Inc. website - www.dulcian.com

	�Dev 2.0: �Living in the World of APIs
	Slide Number 2
	Who Am I? – “Misha” �(aka Michael Rosenblum)
	APIs
	APIs?
	APIs…
	APIs!
	So?
	Slide Number 9
	About the System
	System Statistics
	System Structure
	Stateless Architecture
	Why bother?
	System Architecture
	Slide Number 16
	Dealing with Volume
	Dealing with Volume: Data Model
	Dealing with Volume: Data Model (2)
	Dealing with Volume: Data Model (3)
	Dealing with Volume: Use Case 1
	Dealing with Volume: Use Case 1 (cont.)
	Dealing with Volume: Use Case 2
	Dealing with Volume: Use Case 2 (cont)
	Dealing with Volume: Use Case 2 (cont.)
	Dealing with Volume: Use Case 3
	Dealing with Volume: Use Case 3 (cont.)
	Dealing with Volume: Use Case 4
	Dealing with Volume: Use Case 4 (cont.)
	Handling Errors (1)
	Handling Errors (2)
	Handling Errors (3)
	Testing (1)
	Testing (2)
	Testing (3)
	Debugging
	Coordinating
	Backup plan
	Health Checks
	Summary
	Contact Information

