
Copyright 2000-2006 Steven Feuerstein - Page 1

Steven Feuerstein
PL/SQL Evangelist, Quest Software

steven.feuerstein@quest.com
www.oracleplsqlprogramming.com

www.quest.com

Best Practice PL/SQL
Making the Best Use
of the Best Features

of Oracle PL/SQL

mailto:steven.feuerstein@quest.com

Copyright 2000-2006 Steven Feuerstein - Page 2

Ten Years Writing Ten Books
on the Oracle PL/SQL Language

Copyright 2000-2006 Steven Feuerstein - Page 3

How to benefit most from this class

Watch, listen, ask questions.
Download the training materials and supporting scripts:
– http://oracleplsqlprogramming.com/resources.html
– "Demo zip": all the scripts I run in my class available at

http://oracleplsqlprogramming.com/downloads/demo.zip

Use these materials as an accelerator as you venture into
new territory and need to apply new techniques.
Play games! Keep your brain fresh and active by mixing
hard work with challenging games
– MasterMind and Set (www.setgame.com)

filename_from_demo_zip.sql

Copyright 2000-2006 Steven Feuerstein - Page 4

Critical elements of PL/SQL Best Practices

Build your development toolbox
Unit test PL/SQL programs
Optimize SQL in PL/SQL programs
Manage errors effectively and
consistently
Write readable, maintainable code

Copyright 2000-2006 Steven Feuerstein - Page 5

High Level, High Impact

Drink lots of water.
Write tiny chunks of code.
Stop writing so much SQL.
Stop guessing and start testing.

Top four tips....

Assume everything will change.
Aim for a single point of definition (a SPOD).

Important principles...

Copyright 2000-2006 Steven Feuerstein - Page 6

Drink lots of water!

And lots less coffee.
OK, don't go cold turkey on caffeine.
But drink lots (and lots more) water.
– Coffee dehydrates you and a dehydrated brain just

doesn’t work as effectively.
Generally, we need to take care of our host
body, so that our brain can keep on earning
that big fat paycheck!
– Get away from your computer, take breaks.
– Exercise and stretch.

Copyright 2000-2006 Steven Feuerstein - Page 7

> Build your development toolbox

You need first and foremost a powerful IDE.
– There are many to choose from, varying greatly in price

and functionality.
Other useful tools...
– Avoid writing code; instead rely on code generation,

reusable libraries, etc.
– Test your code using unit testing tools.

And some useful utilities...
– Performance analysis/comparison
– Memory usage analysis

Quest CodeGen Utility
Quest Code Tester

Copyright 2000-2006 Steven Feuerstein - Page 8

Performance Analysis and Comparison

Several options are available...
– TKPROF
– SQL*Plus SET TIMING ON
– DBMS_UTILITY.GET_TIME/GET_CPU_TIME
– SYSTIMESTAMP

The seminar "demo zip" offers several
encapsulations of a DBMS_UTILITY-based
performance analysis script.
– DBMS_UTILITY.GET_CPU_TIME helps you answer that

question down to the 100th of a second.

tmr*.ot
plvtmr.pkg

systimestamp_elapsed.sql
thisuser.*
emplu.pkg

Copyright 2000-2006 Steven Feuerstein - Page 9

Memory usage analysis

Complex data structures (collections, objects,
records) can take up substantial amounts of
memory.
You should be aware of the issue of memory
consumption, know how to analyze memory
usage, and adjust usage as needed.
Let's review memory architecture and then
examine how you can do your own analysis.

Copyright 2000-2006 Steven Feuerstein - Page 10

System Global Area (SGA) of RDBMS Instance

Shared Pool

Refresher: PL/SQL in Shared Memory

Large Pool

Reserved Pool

show_empscalc_totals upd_salaries

Select *
from emp

Shared SQL

Pre-parsed
Update emp
Set sal=...

Library cache

Session 1 memory
(PGA/UGA)

emp_rec emp%rowtype;
tot_tab tottabtype;

Session 2 memory
(PGA/UGA)

emp_rec emp%rowtype;
tot_tab tottabtype;Session 1

Session 2

Copyright 2000-2006 Steven Feuerstein - Page 11

Analyze and manage memory consumption

Analyze through v$ dynamic views
– Obtain "session pga memory" information

from v_$sesstat.

Elements of PL/SQL that affect memory usage:
– BULK COLLECT limit clause
– The NOCOPY hint
– Packaged variables
– DBMS_SESSION programs: free_unused_user_memory,

reset_package and modify_package_state

mysess.sql
show_memory.sp

analyze_memory.sql
memory_analysis.sql

bulklimit.sql
nocopy*.*
emplu.*

Copyright 2000-2006 Steven Feuerstein - Page 12

Six
Simple

Steps
to

Unit Testing
Happiness

> Unit test PL/SQL programs or....

Copyright 2000-2006 Steven Feuerstein - Page 13

Writing software is.....

Copyright 2000-2006 Steven Feuerstein - Page 14

Testing software is.....

Copyright 2000-2006 Steven Feuerstein - Page 15

Buggy software is....

Embarrassing
Expensive
Deadly

Copyright 2000-2006 Steven Feuerstein - Page 16

Buggy software is embarrassing

There can be as many as 20 to 30 bugs per 1,000
lines of software code. —Sustainable Computing
Consortium
32% of organizations say that they release software
with too many defects.—Cutter Consortium
38% of organizations believe they lack an adequate
software quality assurance program.—Cutter
Consortium
27% of organizations do not conduct any formal
quality reviews.—Cutter Consortium
Developers spend about 80% of development costs
on identifying and correcting defects.—The National
Institute of Standards and Technology

Copyright 2000-2006 Steven Feuerstein - Page 17

Buggy software is expensive -
$60B per year in US alone!?

JUNE 25, 2002 (COMPUTERWORLD) -
WASHINGTON -- Software bugs are costing the
U.S. economy an estimated $59.5 billion each
year. Of the total $59.5 billion cost, users
incurred 64% of the cost and developers 36%.
There are very few markets where "buyers are
willing to accept products that they know are
going to malfunction," said Gregory Tassey, the
National Institute of Standards and Technology
senior economist who headed the study. "But
software is at the extreme end in terms of errors
or bugs that are in the typical product when it is
sold."
Oh, yes and Y2K: $300B? $600B?

Copyright 2000-2006 Steven Feuerstein - Page 18

Buggy software is deadly

2003 Software failure contributes to power outage across
the Northeastern U.S. and Canada, killing 3 people.
2001 Five Panamanian cancer patients die following
overdoses of radiation, amounts of which were determined
by faulty use of software.
2000 Crash of a Marine Corps Osprey tilt-rotor aircraft
partially blamed on “software anomaly" kills four soldiers.
1997 Radar that could have prevented Korean jet crash
(killing 225) hobbled by software problem.
1995 American Airlines jet, descending into Cali, Colombia,
crashes into a mountain, killing 159. Jury holds maker of
flight-management system 17% responsible. A report by
the University of Bielefeld in Germany found that the
software presented insufficient and conflicting information
to the pilots, who got lost.

Copyright 2000-2006 Steven Feuerstein - Page 19

How do we avoid buggy software?

Clear and accurate requirements
Careful design
Excellent tools
Best practices, standards, guidelines (that is,
follow them)
Code review
Thorough testing Uh oh...

the world is in
big trouble.

Copyright 2000-2006 Steven Feuerstein - Page 20

Wouldn't it be great if...

It was easy to construct tests
– An agreed-upon and effective approach to test

construction that everyone can understand and follow
It was easy to run tests
– And see the results, instantly and automatically.

Testing were completely integrated into my
development, QA, and maintenance processes
– No program goes to QA until it passes its unit tests
– Anyone can maintain with confidence, because my test

suite automatically validates my changes

Copyright 2000-2006 Steven Feuerstein - Page 21

Different types of testing

There are many types of testing:
functional/system tests, stress tests, unit tests.
A "unit test" is the test of a single unit of code.
– Also known as "programmer tests"

Unit tests are the responsibility of developers -
that is, us, the people in this room.
– Not fundamentally a job for the QA department, which

generally focuses on functional and system tests.

Copyright 2000-2006 Steven Feuerstein - Page 22

Truth or Dare

How do you (or your team) unit test
your PL/SQL code today?
– We use automated testing software.
– We have a formal test process that we each

follow, but otherwise a manual process.
– Everyone does their own thing and we

hope for the best.
– Our users test our code.

?
?

?

?

Copyright 2000-2006 Steven Feuerstein - Page 23

Unit testing reality

Let's face it: we PL/SQL developers don't spend
nearly enough time unit testing our code.
– For the most part, we run a script that displays output on

the screen and then we stare at all until we decide if the test
succeeded or failed.

There are some understandable reasons:
– Very few tools and utilities have been available, to date, for

PL/SQL testing.
– Managers don't give us enough time to prepare and

execute tests.

Copyright 2000-2006 Steven Feuerstein - Page 24

Typical Testing

DBMS_OUTPUT.PUT_LINE - unit testing
mechanism of choice?

betwnstr.sf
betwnstr.tst

BEGIN
DBMS_OUTPUT.PUT_LINE (betwnstr (NULL, 3, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 0, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 3, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', -3, -5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', NULL, 5, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 3, NULL, true));
DBMS_OUTPUT.PUT_LINE (betwnstr ('abcdefgh', 3, 100, true));

END;

Copyright 2000-2006 Steven Feuerstein - Page 25

Problems with Typical Testing

Almost entirely ad hoc
– No comprehensive effort to compile test cases
– No infrastructure to record cases and administer tests
Difficult to verify correctness
– Non-automated verification is slow and error-prone.
Relies on the user community to test
– Since we are never really sure we’ve tested properly, we rely

on our users (or, we are lucky, the QA department) to finish
our job

There has got to be a better way!

Copyright 2000-2006 Steven Feuerstein - Page 26

Moving towards a Better Way

Change from within: your code will not test itself.
– You must accept the responsibility and then be disciplined

(sigh...that's not fun at all).
– Commit to testing and watch the way you write your code

change.
Change from without: new possibilities are on
the horizon!
– utPLSQL
– Quest Code Tester for Oracle

Ah, but what about those six, simple steps?

http://utplsql.sourceforge.net/

http://www.ToadWorld.com

Copyright 2000-2006 Steven Feuerstein - Page 27

Six Simple Steps to Unit Testing Happiness

1. Describe fully the required functionality of the
program.
2. Define the header of the program (name, parameter
list, return value).
3. Elaborate the test cases for the program.
4. Build test code that implements all test cases.
5. Write the program unit.
6. Test, debug, fix, test, debug, fix, test, debug....
Then...repeat steps 3-6 for each enhancement and
bug report.

Copyright 2000-2006 Steven Feuerstein - Page 28

Describe required functionality

I need a variation of SUBSTR that will return the
portion of a string between specified start and end
locations.
Some specific requirements:
– It should work like SUBSTR as much as makes sense (treat a start

location of 0 as 1, for example; if the end location is past the end of
the string, the treat it as the end of the string).

– Negative start and end should return a substring at the end of the
string.

– Allow the user to specify whether or not the endpoints should be
included.

Copyright 2000-2006 Steven Feuerstein - Page 29

Define the program specification

My specification or header should be compatible
with all requirements.
– I also self-document that the function is deterministic: no

side effects.
I can (and will) now create a compile-able stub
for the program. Why do that?
– Because I can then fully define and implement my test code!

FUNCTION betwnstr (
string_in IN VARCHAR2

, start_in IN PLS_INTEGER
, end_in IN PLS_INTEGER
, inclusive_in IN BOOLEAN DEFAULT TRUE

)
RETURN VARCHAR2 DETERMINISTIC

betwnstr0.sf

Copyright 2000-2006 Steven Feuerstein - Page 30

Elaborate the test cases

Before I write my program, I will come up with as many
of the test cases as possible -- and write my test code.
– This is known as "test-driven development". TDD is a very hot topic

among developers and is associated with Agile Software
(http://agilemanifesto.org/) and Extreme Programming.

Putting aside the fancy names and methodologies, TDD
makes perfect sense -- when you stop to think about it.

If you write your program before you define your
tests, how do you know you when you're done?

TNT or TDD?

And if you write your tests afterward, you are likely
to prejudice your tests to show "success."

Copyright 2000-2006 Steven Feuerstein - Page 31

Brainstorm the test cases

Even a simple program will have many test
cases!
– You don't have to think of every one before you

implement your program and start your testing.
– You should aim at least for a "representative" sampling.

But where do you store/define the test cases?
– You can certainly put the information in and work from a

document or spreadsheet.
– Best of all, however, is to link the test case definitions

as tightly as possible to the code.

Copyright 2000-2006 Steven Feuerstein - Page 32

Some of the test cases for BETWNSTR

Start and end within the string ("normal" usage)
Start of 0
End past end of string
Null string, string of single character, 32767 len
character
Null start and/or end
Negative start and end
Start larger than end (positive and negative)
Variations of the above with different inclusive values

Copyright 2000-2006 Steven Feuerstein - Page 33

Test cases and Test Code

The challenge (terror?) of the blank screen....
– How do I define the test cases?
– How do I set up those tests?
– How do I verify the results?

Let's see how Quest Code Tester helps me
tackle these challenges.
– Define and maintain your test cases through a graphical

interface, then let it do all the work.

Copyright 2000-2006 Steven Feuerstein - Page 34

Write the program.

Now that I
know I can test
the program, I
can start
implementing
betwnstr...
Finally!

CREATE OR REPLACE FUNCTION betwnstr (
string_in IN VARCHAR2

, start_in IN PLS_INTEGER
, end_in IN PLS_INTEGER
, inclusive_in IN BOOLEAN DEFAULT TRUE

)
RETURN VARCHAR2 DETERMINISTIC

IS
BEGIN

RETURN (SUBSTR (
string_in

, start_in
, end_in - start_in + 1)
);

END;betwnstr1.sf

First version of "between string"

Copyright 2000-2006 Steven Feuerstein - Page 35

Test, debug, fix, test, debug, fix, test, debug...

With a test script in place, I can quickly and easily
move back and forth between running my program,
identifying errors, debugging and fixing the code,
running the program again.
I also then have my test process and regression
test in place so that as I make enhancements or fix
bugs, I can fall back on this foundation.
– It is critical that you maintain your test case definitions and test

code as your program evolves.
– And update those first -- before you change the program!

Copyright 2000-2006 Steven Feuerstein - Page 36

Change Your Testing Ways

Qute (and even utPLSQL) can make a
dramatic difference in your ability to test and
your confidence in the resulting code.
Build a comprehensive "library" of unit tests
as you build your application
– These tests and all their test cases can be passed on to

other developers
– Anyone can now enhance or maintain the code with

confidence. Make your changes and run the tests. If you
get a green light, you're OK!

Copyright 2000-2006 Steven Feuerstein - Page 37

Testing: Baby steps better than paralysis.

Unit testing is an intimidating process.
– You are never really done.
– You have to maintain your test code along with your

application code.
But every incremental improvement in testing
yields immediate and long-term benefits.
– Don't worry about 100% test coverage.
– Download Qute and give it a try!

www.ToadWorld.com Downloads link

Copyright 2000-2006 Steven Feuerstein - Page 38

> Optimize SQL in PL/SQL programs

Take advantage of PL/SQL-specific
enhancements for SQL.
– BULK COLLECT and FORALL, cursor variables, table

functions
Hide your SQL statements behind a procedural
interface so that you can easily change and
upgrade.
– Avoid repetition and dispersion.

Assume change is going to happen; build that
assumption into your code.

Copyright 2000-2006 Steven Feuerstein - Page 39

Turbo-charged SQL with
BULK COLLECT and FORALL

Improve the performance of multi-row SQL
operations by an order of magnitude or more
with bulk/array processing in PL/SQL!
CREATE OR REPLACE PROCEDURE upd_for_dept (

dept_in IN employee.department_id%TYPE
,newsal_in IN employee.salary%TYPE)

IS
CURSOR emp_cur IS

SELECT employee_id,salary,hire_date
FROM employee WHERE department_id = dept_in;

BEGIN
FOR rec IN emp_cur LOOP

UPDATE employee SET salary = newsal_in
WHERE employee_id = rec.employee_id;

END LOOP;
END upd_for_dept;

“Conventional
binds” (and lots
of them!)

Copyright 2000-2006 Steven Feuerstein - Page 40

Oracle server

PL/SQL Runtime Engine SQL Engine

PL/SQL block Procedural
statement
executor SQL

statement
executor

FOR rec IN emp_cur LOOP
UPDATE employee

SET salary = ...
WHERE employee_id =

rec.employee_id;
END LOOP;

Performance penalty Performance penalty
for many for many ““context context
switchesswitches””

Conventional Bind

Copyright 2000-2006 Steven Feuerstein - Page 41

Enter the “Bulk Bind”

Oracle server

PL/SQL Runtime Engine SQL Engine

PL/SQL block Procedural
statement
executor SQL

statement
executor

FORALL indx IN
deptlist.FIRST..
deptlist.LAST

UPDATE employee
SET salary = ...

WHERE employee_id =
deptlist(indx); Much less overhead for Much less overhead for

context switchingcontext switching

Copyright 2000-2006 Steven Feuerstein - Page 42

Use the FORALL Bulk Bind Statement

Instead of executing repetitive, individual DML
statements, you can write your code like this:

Things to be aware of:
– You MUST know how to use collections to use this feature!
– Only a single DML statement is allowed per FORALL.
– SQL%BULK_ROWCOUNT returns the number of rows affected by

each row in the binding array.
– Prior to Oracle10g, the binding array must be sequentially filled.
– Use SAVE EXCEPTIONS to continue past errors.

PROCEDURE remove_emps_by_dept (deptlist dlist_t)
IS
BEGIN

FORALL aDept IN deptlist.FIRST..deptlist.LAST
DELETE FROM emp WHERE deptno = deptlist(aDept);

END;

bulktiming.sql
bulk_rowcount.sql

bulkexc.sql

Copyright 2000-2006 Steven Feuerstein - Page 43

Use BULK COLLECT INTO for Queries

DECLARE
TYPE employees_aat IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;

l_employees employees_aat;
BEGIN

SELECT *
BULK COLLECT INTO l_employees
FROM employees;

FOR indx IN 1 .. l_employees.COUNT
LOOP

process_employee (l_employees(indx));
END LOOP;

END;

bulkcoll.sql

Declare a
collection of

records to hold
the queried data.

Use BULK
COLLECT to

retrieve all rows.

Iterate through the
collection

contents with a
loop.

Copyright 2000-2006 Steven Feuerstein - Page 44

Limit the number of rows returned by
BULK COLLECT

CREATE OR REPLACE PROCEDURE bulk_with_limit
(deptno_in IN dept.deptno%TYPE)

IS
CURSOR emps_in_dept_cur IS

SELECT *
FROM emp

WHERE deptno = deptno_in;

TYPE emp_tt IS TABLE OF emp%ROWTYPE;
emps emp_tt;

BEGIN
OPEN three_cols_cur;
LOOP

FETCH emps_in_dept_cur
BULK COLLECT INTO emps
LIMIT 100;

EXIT WHEN emps.COUNT = 0;

process_emps (emps);
END LOOP;

END bulk_with_limit;

Use the LIMIT clause with the
INTO to manage the amount

of memory used with the
BULK COLLECT operation.

WARNING!

BULK COLLECT will not raise
NO_DATA_FOUND if no rows

are found.

Best to check contents of
collection to confirm that
something was retrieved.

bulklimit.sql

Copyright 2000-2006 Steven Feuerstein - Page 45

Tips and Fine Points

Use bulk binds in these circumstances:
– Recurring SQL statement in PL/SQL loop. Oracle

recommended threshold: five rows!
Bulk bind rules:
– Can be used with any kind of collection; Collection

subscripts cannot be expressions; The collections must
be densely filled (pre-10g); If error occurs, prior
successful DML statements are NOT ROLLED BACK.

Bulk collects:
– Can be used with implicit and explicit cursors
– Collection is always filled sequentially, starting at row 1

emplu.pkg
cfl_to_bulk*.*

Copyright 2000-2006 Steven Feuerstein - Page 46

Don’t take SQL for granted: hide it!

I moan and groan about SQL because it is
the "Achilles Heel" of PL/SQL.
– It's so easy to write SQL, it is too easy.

We take SQL for granted, and pay a steep
price.

"Why does Steven make such a big deal
about writing SQL inside PL/SQL? It's a
no-brainer in PL/SQL, the last thing we
have to worry about!"

Copyright 2000-2006 Steven Feuerstein - Page 47

Why We Write PL/SQL Code

PL/SQL is an embedded language. Its purpose is
to provide high-speed, easy access to the Oracle
RDBMS.
The layer of PL/SQL code should support the
data model, not disrupt our ability to evolve it.

Order
Table

Item
Table

Order Entry
ProgramBottom line: if everyone

writes SQL whenever and
wherever they want to, it is
very difficult to maintain and
optimize the code.

Copyright 2000-2006 Steven Feuerstein - Page 48

Don’t Repeat SQL Statements

Our data structures are about the most
volatile part of our application.
– SQL statements "hard code" those structures and

relationships.
– Shouldn't we then at least avoid repeating the same

logical statement?
Otherwise we have to debug, optimize and
maintain the same logic in multiple places.
How can we avoid such repetition?

Copyright 2000-2006 Steven Feuerstein - Page 49

How to Avoid SQL Repetition

You should, as a rule, not even
write SQL in your PL/SQL
programs
– You can't repeat it if you don't write it

Instead, rely on pre-built, pre-
tested, written-once, used-often
PL/SQL programs.
– "Hide" both individual SQL statements

and entire transactions.

SQL

Copyright 2000-2006 Steven Feuerstein - Page 50

Best option: comprehensive table APIs

Many (not all!) of the SQL statements we need to
write against underlying tables and views are very
common and predictable.
– Get me all rows for a foreign key.
– Get me one row for a primary key.
– Insert a row; insert a collection of rows.

Why write these over and over? Instead, rely on a
standard, preferably generated, programmatic
interface that takes care of this "basic plumbing."

Qnxo
aka the Quest CodeGen Utility

www.qnxo.com
SOA for PL/SQL Developers!
SQL is a service.
Error mgt is a service.

Copyright 2000-2006 Steven Feuerstein - Page 51

Clear benefits of encapsulated SQL

Change/improve implementation without
affecting application layer of code.
– Switch between types of queries (implicit vs explicit)
– Take advantage of data caching, bulk processing, SQL

enhancements like MERGE.
Consistent error handling
– INSERT: dup_val_on_index?
– SELECT: too_many_rows?
– Much less likely to be ignored when the developer

writes SQL directly in the application.

Copyright 2000-2006 Steven Feuerstein - Page 52

Example: Quest Code Tester backend

For each table, we have
three generated packages:
– <table>_CP for DML
– <table>_QP for queries
– <table>_TP for types

And for many an "extra
stuff" package with custom
SQL logic and related code:
– <table>_XP

Copyright 2000-2006 Steven Feuerstein - Page 53

Hide single row queries

Let's look at specific examples of
encapsulations. First: single row queries.
– Does a row exist? Get me the row for a unique value.

Steps to follow:
– Do not write your query directly in application code.
– Establish clear rules: how are NO_DATA_FOUND and

other common errors handled? How are single row
queries implemented?

– Build or generate a function to return the information,
usually in the form of a record.

single_row_api.sql

Copyright 2000-2006 Steven Feuerstein - Page 54

l_name employee_rp.fullname_t;
BEGIN

l_name :=
employee_rp.fullname (

employee_id_in);
...

END;

CREATE OR REPLACE PACKAGE employee_rp
AS

SUBTYPE fullname_t IS VARCHAR2 (200);

-- The formula
FUNCTION fullname (

l employee.last_name%TYPE,
f employee.first_name%TYPE

)
RETURN fullname_t;

-- Retrieval function
FUNCTION fullname (

employee_id_in IN
employee.employee_id%TYPE

)
RETURN fullname_t;

END;
/

Encapsulate SQL and rules...CREATE OR REPLACE PROCEDURE
process_employee (

employee_id IN number)
IS

l_name VARCHAR2(100);
BEGIN

SELECT last_name || ',' ||
first_name

INTO l_name
FROM employee

WHERE employee_id =
employee_id;

...
END;

And now call the function...

fullname.pkg
explimpl.pkg

Get me the name for an ID...

Copyright 2000-2006 Steven Feuerstein - Page 55

Hide multi-row queries

A trickier encapsulation challenge: how do
you return multiple rows?
– We will need a "container" or mechanism that is not

just a single instance of a row.
Options in PL/SQL from Oracle9i upwards:
– Collection - use BULK COLLECT!
– Cursor variable - especially handy when returning data

to a non-PL/SQL host environment

Copyright 2000-2006 Steven Feuerstein - Page 56

Return multiple rows into a collection

Collection type
must be
declared!
– Can do so in

package
specification or
even as a schema
level object.

CREATE OR REPLACE PACKAGE BODY multirows
IS

FUNCTION emps_in_dept (
dept_in IN employee.department_id%TYPE)
RETURN employees_aat

IS
l_employees employees_aat;

BEGIN
SELECT *
BULK COLLECT INTO l_employees
FROM employees
WHERE department_id = dept_in;

RETURN l_employees;
END emps_in_dept;

END multirows;

multirows.sql

Copyright 2000-2006 Steven Feuerstein - Page 57

Return multiple rows w/ cursor variable

A cursor variable is a variable that points to a
result set.
– You can pass CVs from one program unit to another,

and even to non-PL/SQL programs!
– Java, .Net, VB, etc. generally recognize and can work

with cursor variables (fetch and even close).
Uses the OPEN...FOR statement to
associate the variable with a query.

return_refcur1.sql
return_refcur.tst

ref_cursor_example.sql

Copyright 2000-2006 Steven Feuerstein - Page 58

Hide complex data transformations

Sometimes you need to return multiple rows
of data that are the result of a complex
transformation.
– Can't fit it all (easily) into a SELECT statement.

Table functions to the rescue!
– A table function is a function that returns a collection

and can be called in the FROM clause of a query.
– Combine with cursor variables to return these datasets

through a function interface.
tabfunc_scalar.sql

tabfunc_streaming.sql
tabfunc_pipelined.sql

Copyright 2000-2006 Steven Feuerstein - Page 59

Hide single and multi-row DML operations

As crucial as it is to hide queries, it is even
more important to encapsulate DML.
– Error management is more complex and critical.
– Performance impact is greater.

A generalized UPDATE is usually the most
complicated.
– Probably will need to hand-code specific update

column combinations yourself.

employees_cp.pkb

Copyright 2000-2006 Steven Feuerstein - Page 60

Write Code Assuming Change

Use anchoring to tightly link code to
underlying data structures
Fetch into cursor records
Qualify all references to PL/SQL variables
inside SQL statements

Data structure
changes

Existing
code base

valid

Dependent
programs
marked
invalid

Re-compile
invalid code

DBMS_UTILTY.COMPLE_SCHEMA
UTL_RECOMP(10g)

recompile.sql

Copyright 2000-2006 Steven Feuerstein - Page 61

Anchor Declarations of Variables

You have two choices
when you declare a
variable:
– Hard-coding the datatype
– Anchoring the datatype to

another structure

ename VARCHAR2(30);

totsales NUMBER (10,2);

Hard-Coded Declarations

v_ename emp.ename%TYPE;
totsales pkg.sales_amt%TYPE;

emp_rec emp%ROWTYPE;

tot_rec tot_cur%ROWTYPE;

-- Qnxo approach
emp_rec emp_tp.emp_rt;
l_ename emp_tp.ename_t;

Anchored Declarations
Whenever possible, use anchored
declarations rather than explicit
datatype references

%TYPE for scalar structures
%ROWTYPE for composite
structures

Copyright 2000-2006 Steven Feuerstein - Page 62

Examples of Anchoring

PACKAGE config
IS

dollar_amt NUMBER (10, 2);

SUBTYPE big_string_t IS
VARCHAR2(32767);

SUBTYPE emp_allrows_rt IS
emp%ROWTYPE;

END config;

DECLARE
v_ename emp.ename%TYPE;

v_totsal
config.dollar_amt%TYPE;

v_note config.big_string_t;

v_oneemp
config.emp_rowtype;

BEGIN

plsql_limits.pks
aq.pkg

Qnxo TP packages

Use %TYPE and %ROWTYPE when anchoring to database
elements
Use SUBTYPEs for programmatically-defined types
SUBTYPEs can also be used to mask dependencies that
are revealed by %TYPE and %ROWTYPE.

Copyright 2000-2006 Steven Feuerstein - Page 63

name VARCHAR2 (30);
minbal NUMBER(10,2);

BEGIN
OPEN company_pkg.allrows;
FETCH company_pkg.allrows

INTO name, minbal;

IF name = ‘ACME’ THEN ...

CLOSE company_pkg.allrows;

Always Fetch into Cursor Records

rec company_pkg.allrows%ROWTYPE;
BEGIN
OPEN company_pkg.allrows;
FETCH company_pkg.allrows INTO rec;

IF rec.name = ‘ACME’ THEN ...

CLOSE company_pkg.allrows;

Fetching into individual
variables hard-codes

number of items in select
list.

w
r
o
n
g

r
I
g
h
t

Fetching into a record
means writing

less code.

If the cursor select list
changes, it doesn't

necessarily affect your
code.

Copyright 2000-2006 Steven Feuerstein - Page 64

Avoid SQL-PL/SQL Naming Conflicts

One rule: make sure that you never define variables
with same name as database elements
– OK, you can be sure today, but what about tomorrow?
– Naming conventions simply cannot offer any guarantee

Better approach: always qualify references to PL/SQL
variables inside SQL statements
– Remember: you can use labels to give names to anonymous blocks
PROCEDURE del_scenario
IS

reg_cd VARCHAR2(100) := :GLOBAL.reg_cd;
BEGIN

DELETE FROM scenarios
WHERE reg_cd = del_scenario.reg_cd

AND scenario_id = :scenario.scenario_id;
END;

No problem!

delscen.sql
delscen1.sql
delscen2.sql

Copyright 2000-2006 Steven Feuerstein - Page 65

> Manage errors effectively and consistently

A significant challenge in any programming
environment.
– Ideally, errors are raised, handled, logged and

communicated in a consistent, robust manner
Some special issues for PL/SQL developers
– The EXCEPTION datatype
– How to find the line on which the error is raised?
– Communication with non-PL/SQL host environments

Copyright 2000-2006 Steven Feuerstein - Page 66

Achieving ideal error management

Define your requirements clearly
Understand PL/SQL error management
features and make full use of what PL/SQL
has to offer
Apply best practices.
– Compensate for PL/SQL weaknesses
– Single point of definition: use reusable components to

ensure consistent, robust error management

Copyright 2000-2006 Steven Feuerstein - Page 67

Define your requirements clearly

When will errors be raised, when handled?
– Do you let errors go unhandled to the host, trap locally, or

trap at the top-most level?
How should errors be raised and handled?
– Will users do whatever they want or will there be standard

approaches that everyone will follow?
Useful to conceptualize errors into three
categories:
– Deliberate, unfortunate, unexpected

Copyright 2000-2006 Steven Feuerstein - Page 68

Different types of exceptions

Deliberate
– The code architecture itself deliberately relies on an

exception. Example: UTL_FILE.GET_LINE
Unfortunate
– It is an error, but one that is to be expected and may not

even indicate a problem. Example: SELECT INTO ->
NO_DATA_FOUND

Unexpected
– A "hard" error that indicates a problem within the

application. Example: Primary key lookup raises
TOO_MANY ROWS

exec_ddl_from_file.sql
get_nextline.sf

fullname.pkb

fullname.pkb

Copyright 2000-2006 Steven Feuerstein - Page 69

PL/SQL error management features

Defining exceptions
Raising exceptions
Handing exceptions
Exceptions and DML

Copyright 2000-2006 Steven Feuerstein - Page 70

Quiz! Test your exception handling know-how

DECLARE
aname VARCHAR2(5);

BEGIN
BEGIN

aname := 'Justice';
DBMS_OUTPUT.PUT_LINE (aname);

EXCEPTION
WHEN VALUE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('Inner block');
END;
DBMS_OUTPUT.PUT_LINE ('What error?');

EXCEPTION
WHEN VALUE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('Outer block');
END;

excquiz1.sql

What do you see after running this block?

Copyright 2000-2006 Steven Feuerstein - Page 71

Defining Exceptions

The EXCEPTION is a limited type of data.
– Has just two attributes: code and message.
– You can RAISE and handle an exception, but it cannot

be passed as an argument in a program.
Give names to error numbers with the
EXCEPTION_INIT PRAGMA.

CREATE OR REPLACE PROCEDURE upd_for_dept (
dept_in IN employee.department_id%TYPE

, newsal_in IN employee.salary%TYPE
)
IS

bulk_errors EXCEPTION;
PRAGMA EXCEPTION_INIT (bulk_errors, -24381);

Copyright 2000-2006 Steven Feuerstein - Page 72

Raising Exceptions

RAISE raises the specified exception by
name.
– RAISE; re-raises current exception. Callable only within

the exception section.
RAISE_APPLICATION_ERROR
– Communicates an application specific error back to a

non-PL/SQL host environment.
– Error numbers restricted to the -20,999 - -20,000 range.

Copyright 2000-2006 Steven Feuerstein - Page 73

Using RAISE_APPLICATION_ERROR

IF :NEW.birthdate > ADD_MONTHS (SYSDATE, -1 * 18 * 12)
THEN

RAISE_APPLICATION_ERROR
(-20070, ‘Employee must be 18.’);

END IF;

Communicate an error number and message to a
non-PL/SQL host environment.
– The following code from a database triggers shows a typical

(and problematic) usage of RAISE_APPLICATION_ERROR:

RAISE_APPLICATION_ERROR
(num binary_integer, msg varchar2,
keeperrorstack boolean default FALSE);

Copyright 2000-2006 Steven Feuerstein - Page 74

Quiz: An Exceptional Package

So I create the valerr package and then execute the
following command. What is displayed on the screen?

PACKAGE valerr
IS
FUNCTION
get RETURN VARCHAR2;

END valerr;

SQL> EXECUTE p.l (valerr.get);

PACKAGE BODY valerr
IS

v VARCHAR2(1) := ‘abc’;
FUNCTION get RETURN VARCHAR2 IS
BEGIN

RETURN v;
END;

BEGIN
p.l ('Before I show you v...');

EXCEPTION
WHEN OTHERS THEN
p.l (‘Trapped the error!’);

END valerr;

valerr.pkg
valerr2.pkg

Copyright 2000-2006 Steven Feuerstein - Page 75

Handling Exceptions

The EXCEPTION section consolidates all error
handling logic in a block.
– But only traps errors raised in the executable section of the block.

Several useful functions usually come into play:
– SQLCODE and SQLERRM
– DBMS_UTILITY.FORMAT_ERROR_STACK
– DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

The DBMS_ERRLOG package
– Quick and easy logging of DML errors

The AFTER SERVERERROR trigger
– Instance-wide error handling

Copyright 2000-2006 Steven Feuerstein - Page 76

DBMS_UTILITY error functions

Get the full error message with
DBMS_UTILITY.FORMAT_ERROR_STACK
– SQLERRM might truncate the message.
– Use SQLERRM went you want to obtain the message associated

with an error number.
Find line number on which error was raised with
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
– Introduced in Oracle10g Release 2, this function returns the full

stack of errors with line number information.
– Formerly, this stack was available only if you let the error go

unhandled.
backtrace.sql

Copyright 2000-2006 Steven Feuerstein - Page 77

DBMS_ERRLOG (Oracle10gR2)

Allows DML statements to execute against all
rows, even if an error occurs.
– The LOG ERRORS clause specifies how logging should

occur.
– Use the DBMS_ERRLOG package to associate a log

table with DML operations on a base table.
Much faster than trapping errors, logging,
and then continuing/recovering.
Note: FORALL with SAVE EXCEPTIONS
offers similar capabilities.

dbms_errlog.*

Copyright 2000-2006 Steven Feuerstein - Page 78

The AFTER SERVERERROR trigger

Provides a relatively simple way to use a
single table and single procedure for
exception handling in an entire instance.
Drawbacks:
– Error must go unhandled out of your PL/SQL block for

the trigger to kick in.
– Does not fire for all errors (NO: -600, -1403, -1422...)

Most useful for non-PL/SQL front ends
executing SQL statements directly.

afterservererror.sql

Copyright 2000-2006 Steven Feuerstein - Page 79

Exceptions and DML

DML statements generally are not rolled back when an
exception is raised.
– This gives you more control over your transaction.

Rollbacks occur with...
– Unhandled exception from the outermost PL/SQL block;
– Exit from autonomous transaction without commit/rollback;
– Other serious errors, such as "Rollback segment too small".

Corollary: error logs should rely on autonomous
transactions to avoid sharing the same transaction as
the application.
– Log information is committed, while leaving the business

transaction unresolved.
log8i.pkg

Copyright 2000-2006 Steven Feuerstein - Page 80

Best practices for error management

Compensate for PL/SQL weaknesses.
Some general guidelines:
– Avoid hard-coding of error numbers and messages.
– Build and use reusable components for raising,

handling and logging errors.
Application-level code should not contain:
– RAISE_APPLICATION_ERROR: don't leave it to the

developer to decide how to raise.
– PRAGMA EXCEPTION_INIT: avoid duplication of error

definitions.

Copyright 2000-2006 Steven Feuerstein - Page 81

Compensate for PL/SQL weaknesses

The EXCEPTION datatype does not allow you
to store the full set of information about an
error.
– What was the context in which the error occurred?

Difficult to ensure execution of common error
handling logic.
– Usually end up with lots of repetition.
– No "finally" section available in PL/SQL - yet.

Restrictions on how you can specify the error
– Only 1000 for application-specific errors....

Copyright 2000-2006 Steven Feuerstein - Page 82

Object-like representation of an exception

An error is a row in the error table, with many
more attributes than simply code and
message, including:
– Dynamic message (substitution variables)
– Help message (how to recover from the problem)

An error instance is one particular
occurrence of an error.
– Associated with it are one or more values that reflect

the context in which the error was raised.

Copyright 2000-2006 Steven Feuerstein - Page 83

ERD for error definition tables

qd_error.erd
qd_runtime.pkb

Copyright 2000-2006 Steven Feuerstein - Page 84

Hard to avoid code repetition in handlers

If every developer writes exception handler code
on their own, you end up with an unmanageable
situation.
– Different logging mechanisms, no standards for error message text,

inconsistent handling of the same errors, etc.

WHEN NO_DATA_FOUND THEN
INSERT INTO errlog
VALUES (SQLCODE

, 'No company for id ' || TO_CHAR (v_id)
, 'fixdebt', SYSDATE, USER);

WHEN OTHERS THEN
INSERT INTO errlog
VALUES (SQLCODE, SQLERRM, 'fixdebt', SYSDATE, USER);

RAISE;
END;

Copyright 2000-2006 Steven Feuerstein - Page 85

Prototype exception manager package

PACKAGE errpkg
IS

PROCEDURE raise (err_in IN PLS_INTEGER);
PROCEDURE raise (err_in in VARCHAR2);

PROCEDURE record_and_stop (
err_in IN PLS_INTEGER := SQLCODE
,msg_in IN VARCHAR2 := NULL);

PROCEDURE record_and_continue (
err_in IN PLS_INTEGER := SQLCODE
,msg_in IN VARCHAR2 := NULL);

END errpkg;

Generic Raises

Record
and Stop

Record
and Continue

errpkg.pkg

Copyright 2000-2006 Steven Feuerstein - Page 86

Invoking standard handlers

The rule: developers should only call a pre-defined
handler inside an exception section
– Make it easy for developers to write consistent, high-quality code
– They don't have to make decisions about the form of the log and

how the process should be stopped

EXCEPTION
WHEN NO_DATA_FOUND
THEN

errpkg.record_and_continue (
SQLCODE,
' No company for id ' || TO_CHAR (v_id));

WHEN OTHERS
THEN

errpkg.record_and_stop;
END;

The developer simply
describes

the desired action.

Copyright 2000-2006 Steven Feuerstein - Page 87

Specifying the error

How should I specify the application-
specific error I need to raise?

* Just use -20000 all the time?
* Pick one of those 1000 numbers from

-20999 to -20000?
* Use any positive error number

besides 1 and 100?
* Use error names instead of numbers?

Copyright 2000-2006 Steven Feuerstein - Page 88

Avoid hard-coding of -20,NNN Errors

Give your
error numbers
names and
associate
them with
named
exceptions.

PACKAGE errnums
IS

en_general_error CONSTANT NUMBER := -20000;
exc_general_error EXCEPTION;
PRAGMA EXCEPTION_INIT
(exc_general_error, -20000);

en_must_be_18 CONSTANT NUMBER := -20001;
exc_must_be_18 EXCEPTION;
PRAGMA EXCEPTION_INIT
(exc_must_be_18, -20001);

en_sal_too_low CONSTANT NUMBER := -20002;
exc_sal_too_low EXCEPTION;
PRAGMA EXCEPTION_INIT
(exc_sal_too_low , -20002);

max_error_used CONSTANT NUMBER := -20002;

END errnums; msginfo.pkg
msginfo.fmb/fmx

But don't write this
code manually!

Copyright 2000-2006 Steven Feuerstein - Page 89

Using the standard raise program

Rather than have individual programmers call
RAISE_APPLICATION_ERROR, simply call the
standard raise program. Benefits:
– Easier to avoid hard-codings of numbers.
– Support positive error numbers!

Let's revisit that trigger logic using the infrastructure
elements...

PROCEDURE validate_emp (birthdate_in IN DATE) IS
BEGIN

IF ADD_MONTHS (SYSDATE, 18 * 12 * -1) < birthdate_in
THEN

errpkg.raise (errnums.en_too_young);
END IF;

END;
No more hard-coded
strings or numbers.

Copyright 2000-2006 Steven Feuerstein - Page 90

Raise/handle errors by number...or name?

The above trigger fragment illustrates a common
problem: Hard-coding of error numbers and
messages.
Certainly, it is better to use named constants, as in:

BEGIN
IF employee_rp.is_to_young (:new.hire_date)
THEN

RAISE_APPLICATION_ERROR (
-20175, 'You must be at least 18 years old!');

END IF;

BEGIN
IF employee_rp.is_to_young (:new.hire_date)
THEN

RAISE_APPLICATION_ERROR (
employee_rp.en_too_young

, employee_rp.em_too_young);
END IF;

But now we have a
centralized
dependency.

Copyright 2000-2006 Steven Feuerstein - Page 91

Raising errors by name

Use an error name (literal value).
– The code compiles now.
– Later, I define that error in the repository.
– No central point of failure.

Downsides: risk of typos, runtime notification of
"undefined error."

BEGIN
IF employee_rp.is_to_young (:new.hire_date)
THEN

qd_runtime.raise_error (
'EMPLOYEE-TOO-YOUNG'

, name1_in => 'LAST_NAME'
, value1_in => :new.last_name);

END IF;

Qnxo
qd_runtime.*

Copyright 2000-2006 Steven Feuerstein - Page 92

Summary: an Exception Handling Architecture

Make sure you understand how it all works
– Exception handling is tricky stuff

Set standards before you start coding
– It's not the kind of thing you can easily add in later

Use standard infrastructure components
– Everyone and all programs need to handle errors the same

way
Don't accept the limitations of Oracle's current
implementation.
– You can do lots to improve the situation.

Copyright 2000-2006 Steven Feuerstein - Page 93

> Write readable, maintainable code

PL/SQL allows you to write very readable,
self-documenting and easily-maintained
code.
– This should be a primary objective for any program.

Let's look at...
– Readability features you should use
– Modular construction in PL/SQL

Copyright 2000-2006 Steven Feuerstein - Page 94

Readability features you should use

END labels
– For program units, loops, nested blocks

SUBTYPEs
– Create application-specific datatypes!

Named notation
– Sometimes the extra typing is worth it!

Local or nested modules
– Key technique, to be covered under "Modular

construction..."

end_labels.sql

plsql_limits.pks
explimpl.pkg

namednot.sql

Copyright 2000-2006 Steven Feuerstein - Page 95

Modular construction in PL/SQL

Packages: some quick reminders...
– Logical containers for related elements
– Overloading
– Package-level data and caching
– Initialization section

Local or nested modules
– Avoid spaghetti code!
– Keep your executable sections small/tiny.

Copyright 2000-2006 Steven Feuerstein - Page 96

Packages: key PL/SQL building block

Employ object-oriented design principles
– Build at higher levels of abstraction
– Enforce information hiding - you can control what people can

see and do
– Call packaged code from object types and triggers

Encourages top-down design and bottom-up
construction
– TD: Design the interfaces required by the different components

of your application without addressing implementation details
– BU: Existing packages contain building blocks for new code

Organize your stored code more effectively
Implements session-persistent data

Copyright 2000-2006 Steven Feuerstein - Page 97

Overloading

Overloading, aka, "static polymorphism",
occurs when 2 or more programs in the same
scope have the same name.
– Can overload in any declarations section.

Benefits of overloading include...
– Improved usability of package: users have to remember

fewer names, overloadings anticipate different kinds of
usages.

Beware! Ambiguous overloadings are
possible.

ambig_overload.sql

Copyright 2000-2006 Steven Feuerstein - Page 98

Package Data: Useful, but Sticky

The scope of a package is your session, and any
data defined at the "package level" also has
session scope.
– If defined in the package specification, any program can directly

read/write the data.
– Ideal for program-specific caching.

General best practice: hide your package data in
the body so that you can control access to it.
Use the SERIALLY_REUSABLE pragma to move
data to SGA and have memory released after each
usage.

thisuser.pkg
thisuser.tst
emplu.pkg
serial.sql

Copyright 2000-2006 Steven Feuerstein - Page 99

Package Initialization

The initialization section:
– Is defined after and outside of any

programs in the package.
– Is not required. In fact, most

packages you build won't have one.
– Can have exception handling section.

Useful for:
– Performing complex setting of default

or initial values.
– Setting up package data which does

not change for the duration of a
session.

– Confirming that package is properly
instantiated.

PACKAGE BODY pkg
IS

PROCEDURE proc IS
BEGIN
END;

FUNCTION func RETURN
BEGIN
END;

BEGIN
...initialize...

END pkg;

BEGIN after/outside
of any program

defined in the pkg. init.pkg
init.tst

datemgr.pkg
valerr.pkg

assoc_array5.sql

Copyright 2000-2006 Steven Feuerstein - Page 100

Write tiny chunks of code.

It is virtually impossible to understand and
therefore debug or maintain code that has
long, meandering executable sections.
How do you follow this guideline?
– Don't skimp on the packages.
– Top-down design / step-wise refinement
– Use lots of local or nested modules.

?!?!Limit executable sections
to no more than 50 lines!

Copyright 2000-2006 Steven Feuerstein - Page 101

PROCEDURE assign_workload (department_in IN NUMBER)
IS

CURSOR emps_in_dept_cur
IS

SELECT * FROM emp WHERE deptno = department_in;

PROCEDURE assign_next_open_case
(emp_id_in IN NUMBER, case_out OUT NUMBER) IS BEGIN … END;

FUNCTION next_appointment (case_id_in IN NUMBER) IS BEGIN … END;

PROCEDURE schedule_case
(case_in IN NUMBER, date_in IN DATE) IS BEGIN … END;

BEGIN /* main */
FOR emp_rec IN emps_in_dept_cur
LOOP

IF analysis.caseload (emp_rec.emp_id) <
analysis.avg_cases (department_in)

THEN
assign_next_open_case (emp_rec.emp_id, case#);
schedule_case

(case#, next_appointment (case#));
END IF;

END LOOP
END assign_workload;

Move blocks of
complex code into
the declaration
section

Replace them with
descriptive names

The code is now
easier to read and
maintain

You can more
easily identify
areas for
improvement

Check out my series
on the OverloadCheck

utility on OTN

Let's read some code!

locmod.sp
10g_indices_of.sql

Copyright 2000-2006 Steven Feuerstein - Page 102

Challenges of local modules

Requires discipline.
– Always be on the lookout for opportunities to refactor.

Need to read from the bottom, up.
– Takes some getting used to.

Your IDE needs to reveal the internal
structure of the program.
Sometimes can feel like a "wild goose
chase".
– Where is the darned thing actually implemented?

Copyright 2000-2006 Steven Feuerstein - Page 103

Acknowledgements and Resources

Very few of my ideas are truly
original. I have learned from
every one of these books and
authors – and you can, too!

Copyright 2000-2006 Steven Feuerstein - Page 104

A guide to my mentors/resources

A Timeless Way of Building – a beautiful and deeply spiritual book on
architecture that changed the way many developers approach writing software.
On Intelligence – a truly astonishing book that lays out very concisely a new
paradigm for understanding how our brains work.
Peopleware – a classic text on the human element behind writing software.
Refactoring – formalized techniques for improving the internals of one's code
without affect its behavior.
Code Complete – another classic programming book covering many aspects of
code construction.
The Cult of Information – thought-provoking analysis of some of the down-
sides of our information age.
Patterns of Software – a book that wrestles with the realities and problems with
code reuse and design patterns.
Extreme Programming Explained – excellent introduction to XP.
Code and Other Laws of Cyberspace – a groundbreaking book that recasts
the role of software developers as law-writers, and questions the direction that
software is today taking us.

Copyright 2000-2006 Steven Feuerstein - Page 105

(Mostly) Free PL/SQL Resources

Oracle Technology Network PL/SQL page

OTN Best Practice PL/SQL

Oracle documentation

OraclePLSQLProgramming.com

Quest Pipelines

Quest Code Tester for Oracle

PL/Vision

http://www.oracle.com/technology/tech/pl_sql/index.html

http://www.oracle.com/technology/pub/columns/plsql/index.html

http://tahiti.oracle.com/

http://oracleplsqlprogramming.com/

http://quest-pipelines.com/

http://quest-pipelines.com/pipelines/dba/PLVision/plvision.htm

http://www.ToadWorld.com http://unittest.inside.quest.com/index.jspa

Copyright 2000-2006 Steven Feuerstein - Page 106

So much to learn, so many
ways to improve...

DRINK LOTS OF WATER.
WRITE TINY CHUNKS OF CODE.
STOP WRITING SO MUCH SQL.
STOP GUESSING, START TESTING.

	Ten Years Writing Ten Books � on the Oracle PL/SQL Language
	How to benefit most from this class
	Critical elements of PL/SQL Best Practices
	High Level, High Impact
	Drink lots of water!
	> Build your development toolbox
	Performance Analysis and Comparison
	Memory usage analysis
	Refresher: PL/SQL in Shared Memory
	Analyze and manage memory consumption
	> Unit test PL/SQL programs or....
	Writing software is.....
	Testing software is.....
	Buggy software is....
	Buggy software is embarrassing
	Buggy software is expensive - �$60B per year in US alone!?
	Buggy software is deadly
	How do we avoid buggy software?
	Wouldn't it be great if...
	Different types of testing
	Truth or Dare
	Unit testing reality
	Typical Testing
	Problems with Typical Testing
	Moving towards a Better Way
	Six Simple Steps to Unit Testing Happiness
	Describe required functionality
	Define the program specification
	Elaborate the test cases
	Brainstorm the test cases
	Some of the test cases for BETWNSTR
	Test cases and Test Code
	Write the program.
	Test, debug, fix, test, debug, fix, test, debug...
	Change Your Testing Ways
	Testing: Baby steps better than paralysis.
	> Optimize SQL in PL/SQL programs
	Turbo-charged SQL with �BULK COLLECT and FORALL
	Conventional Bind
	Enter the “Bulk Bind”
	Use the FORALL Bulk Bind Statement
	Use BULK COLLECT INTO for Queries
	Limit the number of rows returned by BULK COLLECT
	Tips and Fine Points
	Don’t take SQL for granted: hide it!
	Why We Write PL/SQL Code
	Don’t Repeat SQL Statements
	How to Avoid SQL Repetition
	Best option: comprehensive table APIs
	Clear benefits of encapsulated SQL
	Example: Quest Code Tester backend
	Hide single row queries
	Get me the name for an ID...
	Hide multi-row queries
	Return multiple rows into a collection
	Return multiple rows w/ cursor variable
	Hide complex data transformations
	Hide single and multi-row DML operations
	Write Code Assuming Change
	Anchor Declarations of Variables
	Examples of Anchoring
	Always Fetch into Cursor Records
	Avoid SQL-PL/SQL Naming Conflicts
	> Manage errors effectively and consistently
	Achieving ideal error management
	Define your requirements clearly
	Different types of exceptions
	PL/SQL error management features
	Quiz! Test your exception handling know-how
	Defining Exceptions
	Raising Exceptions
	Using RAISE_APPLICATION_ERROR
	Quiz: An Exceptional Package
	Handling Exceptions
	DBMS_UTILITY error functions
	DBMS_ERRLOG (Oracle10gR2)
	The AFTER SERVERERROR trigger
	Exceptions and DML
	Best practices for error management
	Compensate for PL/SQL weaknesses
	Object-like representation of an exception
	ERD for error definition tables
	Hard to avoid code repetition in handlers
	Prototype exception manager package
	Invoking standard handlers
	Specifying the error
	Avoid hard-coding of -20,NNN Errors
	Using the standard raise program
	Raise/handle errors by number...or name?
	Raising errors by name
	Summary: an Exception Handling Architecture
	> Write readable, maintainable code
	Readability features you should use
	Modular construction in PL/SQL
	Packages: key PL/SQL building block
	Overloading
	Package Data: Useful, but Sticky
	Package Initialization
	Write tiny chunks of code.
	Let's read some code!
	Challenges of local modules
	Acknowledgements and Resources
	A guide to my mentors/resources
	(Mostly) Free PL/SQL Resources
	So much to learn, so many ways to improve...

