Setting Up OBIEE on a Snowflake-Heavy Data Warehouse

An Overview

Rebecca Widom

Manager, Business Intelligence, Analysis, and Testing Enterprise Data Warehouse NYC Human Resources Administration

NYOUG March 12, 2014

Human Resources Administration Department of Social Services

Today's Workshop

- Introduction
- Best practices in OBIEE metadata repository design
- Our data and requirements, a.k.a. "You are a unique snowflake"
- Rules we follow
- Workarounds and rules we break
- Conclusion

Introduction

The Big Caveat

- Lessons from a single project.
- Workarounds by and for relative newbies trying to fit a snowflake legacy into a star-based product and address our particular requirements and data model.
- YMMV.
- Feedback, questions, additional conversation welcome!
 - If it weren't, I wouldn't be here!

Big thanks to the EDW team!

- Alfredo Veliz
- Alvin Woods
- Anil Tripathi
- Anna Stern
- Dinesh Veera
- Jane Neimand
- Marina Nunez
- Mihaela lancu
- Minkie English
- Nick Gagliotti
- Oleg Gorelik

- Pavel Syrov
- Rachael Bickhardt
- Ravi Teppla
- Rochelle Eisenstein
- Ron Berry
- Sandy Slaughter
- Sanjay Patel
- Stan Rostov
- Suresh Muddaveerappa
- Venu Kadiyala
- Yasemin Turgut

Big thanks to our user advisors!

- Akinkunmi Akintunde
- Alexander Mattera
- Ann Kelleher
- Badar Chaudhry
- Bedros Boodanian
- Brian Graham-Jones
- Elsa Stazesky
- Eva Lazar
- Gordon Kraus-Friedberg
- Joan Dworetzky
- John Noel

- Jorge Burgos
- Joseph Varghese
- Kevin Fellner
- Margaret Boateng
- Mary Ellen O'Connell
- Michael Scianna
- Premal Shroff
- Sally Ramirez
- Sarah Haas
- Sean Blake
- Wah-Yuen Leung

Best Practices

Flow of Data Through the Three-Layer Semantic Model

T : +44 (0) 8446 697 995 or (888) 631 1410 (USA) E : enquiries@rittmanmead.com W: www.rittmanmead.com

https://s3.amazonaws.com/rmc_docs/OOW2010_OBIEE_11gR1_Data_Modeling_Best_Practices_&_New_Features.pdf

Thursday, 23 September 2010

Best Practices: Physical Layer

- Create aliases for all tables.
- Create keys, foreign keys, and other joins on the aliases, not the original tables.
- Use Opaque Views *only* as a last resort. Instead...
 - Apply filters in joins and logical tables sources, so that only the necessary tables are included in any given query, OR
 - Create tables or materialized views in ETL, so that computation doesn't have to happen on the fly.
- Avoid circular joins.
- <u>https://blogs.oracle.com/pa/resource/CEAL_BIDesignBestPracticesV1.4.pdf</u>

Best Practices: Business Model (BMM)

- Rename logical columns to use presentation names
- Keep only required columns in the BMM
- Dims
 - Assign business columns as primary keys
 - No aggregate measures
 - Create associated logical dimension hierarchy
- Facts
 - Create an implicit fact column mapped to 1, with no aggregation rule
 - All other columns should be aggregate measures
 - No logical/BMM primary key

Business Model Design

- Logical star-schemas only:
 - No snow-flaking !
 - Only one exception: BM for Siebel Marketing list formats.

ORACLE

Missing Dimensional Hierarchies

- Always create a dimension hierarchy for all dimensions, even if there is only one level in the dimension.
 - BI Server may need it to select the most optimized Logical Table Source.
 - It may be useful when BI Server performs a join between two results sets, when two fact tables are used in a report.
 - It is necessary for level-based measures.
 - It is needed to set content level of logical table sources

Also necessary to avoid dropped filters in physical SQL.

ORACLE

Level Keys

- The primary key of each level must always be unique
- The primary key of the lowest level of the hierarchy must always be the primary of the logical table

ogical Level - Month						
General Keys Pre	General Keys Preferred Dril Path					
Primary key:	sar_Month					
Key Name	Columns	Description	Use for Display			
Year_Month	DO Time Year_Mont					
Month Name	D0 Time. Month Nam		✓			

ORACLE

Content Level

Always specify the content level in all logical table sources, both in facts an dimensions.

- It will allow BI Server to select the most optimized LTS in queries.
- It will help consistency checker finding the issues in RPD configuration, preventing runtime errors.

Logical Table Source - LTS1 Time Day Grain				
General Column Mapping	Content Parent-Child Settin	gs		
Aggregation content, group by Logical Level				
Logical Dimension				
H0 Time	D) ay Detail		

ORACLE

Canonical Time Dimension

Each Business Model should include a main time dimension connected to almost all fact tables. This is necessary for reports that includes multiple facts. It is also much easier for end-users than having a time dimension per fact table.

ORACLE

Best Practices: Presentation Layer

- Simple subject areas with a few facts as possible, and ones that share dimensions.
- Configure presentation folders to each type of user.
- Add descriptions for subject areas, folders, and columns.

More Best Practices...

- <u>s3.amazonaws.com/rmc_docs/OOW2010_OBIEE_11gR1_Data_Modeling_Best_Pr_actices_&_New_Features.pdf</u>
- <u>blogs.oracle.com/pa/resource/CEAL_BIDesignBestPracticesV1.4.pdf</u>
- <u>obieepedia.wordpress.com/category/obiee-best-practices/</u>
- <u>debaatobiee.wordpress.com/category/obiee/best-practices/</u>
- <u>allaboutobiee.blogspot.com/2012/03/obiee-best-practices-in-bmm-layer.html</u>
- <u>www.varanasisaichand.com/2011/08/dimensional-hierarchies-best-practices.html</u>

Data Sources: WMS (and SSI)

- Welfare Management System and SSI State Data Exchange
- Budgeting, demographics, GIS for all programs
- SCD2 for lawsuits and audits
 - Millions of clients and families, 15 years of history
 - 450+ data elements
- Monster dims plus code definitions
- Aggregate measures: count distinct

Select Subject Area

DataSmart

Frequently-used data elements from all data sources for cases that were active (AC, SI, AS, or IC) in the past 3 or 4 years.

NYCWAY

Employment and engagement-related events for teen and adult CA/PA and SNAP/FS recipients from New York City Work, Accountability and You (NYCWAY).

🎁 SSI

Eligibility, budget and demographic data related to SSI daimants and recipients from the New York State Data Exchange (SDX).

WMS

Client eligibility and budgeting data used in determining CA/PA, SNAP/FS and MA benefits. Includes GIS data for case addresses.

简 WMS Issuance Data

CA/PA and SNAP/FS benefit history.

🔞 eMedNY

Adjudicated claims and provider information for MA-eligible recipients from the NYS Department of Health's MA claims processing system. Includes GIS data for provider addresses.

Usage by Source

Data Sources: NYCWAY

- New York City Work Accountability & You
- Employment services & case management
- This happened, then this happened, then...
- Factless Facts plus code definitions
- Aggregate measures are all count distinct

Select Subject Area

DataSmart

Frequently-used data elements from all data sources for cases that were active (AC, SI, AS, or IC) in the past 3 or 4 years

NYCWAY

Employment and engagement-related events for teen and adult CA/PA and SNAP/FS recipients from New York City Work, Accountability and You (NYCWAY).

🕽 SSI

Eligibility, budget and demographic data related to SSI daimants and recipients from the New York State Data Exchange (SDX).

WMS

Client eligibility and budgeting data used in determining CA/PA, SNAP/FS and MA benefits. Includes GIS data for case addresses.

WMS Issuance Data

CA/PA and SNAP/FS benefit history.

eMedNY

Adjudicated claims and provider information for MA-eligible recipients from the NYS Department of Health's MA claims processing system. Includes GIS data for provider addresses.

Data Sources: Issuances & eMedNY

- Payments made to or on behalf of clients and client households.
- Finally, dollars to sum and nice star models!

Select Subject Area

DataSmart

Frequently-used data elements from all data sources for cases that were active (AC, SI, AS, or IC) in the past 3 or 4 years.

MYCWAY

Employment and engagement-related events for teen and adult CA/PA and SNAP/FS recipients from New York City Work, Accountability and You (NYCWAY).

🔊 SSI

Eligibility, budget and demographic data related to SSI claimants and recipients from the New York State Data Exchange (SDX).

WMS

Client eligibility and budgeting data used in determining CA/PA, SNAP/FS and MA benefits. Includes GIS data for case addresses.

WMS Issuance Data

CA/PA and SNAP/FS benefit history.

eMedNY

Adjudicated claims and provider information for MA-eligible recipients from the NYS Department of Health's MA claims processing system. Includes GIS data for provider addresses.

Data Mart overview from Discoverer

Code and Time Dimensions not pictured here

More on SCD2s

- Change dates let you know when the record was in effect
- Most recent data has an end date of 12/31/9999
- If *any* column changes in the table we add a new row and update effective dates.
- With the requirement of hundreds of fields and full SCD2 history, we have had to denormalize.

SCD2: Sample

Case Status

	▶ Case Number	৮ Case Status	▶ Program Type	Case Status Change Date	Case Status ▶ End Date
1		CL	PA	04/23/2009	09/30/2009
2		SI	PA	10/01/2009	10/25/2009
3	£ 009783841B 84	AC	PA	10/26/2009	03/15/2010
4	140037836418	CL	PA	03/16/2010	12/31/9999

Responsible
Center
(Case Suffix
Dim)

	▶ Case Number	▶ Resp Center	▹ Change Eff Date	▶ End Eff Date
1	100970506131	099	04/23/2009	09/30/2009
2	00978384183	099	10/01/2009	10/01/2009
3	00978384180	099	10/02/2009	10/25/2009
4	0097838416	099	10/26/2009	10/26/2009
5	10097838418	099	10/27/2009	11/01/2009
6	AC097838418 (5)	099	11/02/2009	11/26/2009
7	0097838418	039	11/27/2009	11/30/2009
8	10097636418	039	12/01/2009	01/08/2010
9	0097838418	039	01/09/2010	01/15/2010
10	0097838418	039	01/16/2010	02/22/2010
11	0097838418	039	02/23/2010	03/15/2010
12	+100978384113	039	03/16/2010	12/31/9999

SCD2: Single date conditions

- Today or some other day
 - Who is currently active for Food Stamps/SNAP?
 - Who was active for Food Stamps/SNAP on July 1, 2013?
 - What was the status on the service date of this claim?
- One record per case, case suffix, case line, or ssn, whichever is the rest of the table key
- No risk of multiplied sums if the rest of the join is correct

Joins: Monster Dim to Monster Dim

- Different SCD2s for the same client get new records on different days.
- So, Change Eff Date A does not necessarily equal Change Eff Date B.
- Instead, identify pairs of records that were in effect on overlapping dates.
- Many to many join, even for a single client

	Individual Status			Recipient Dim		
	Ind Status	Change Eff Date	End Eff Date	SSN Validation	Change Eff Date	End Eff Date
\bigotimes	Active	01/01/2007	01/14/2008	1	01/01/2007	01/10/2007
\bigotimes	Active	01/01/2007	01/14/2008	8	01/11/2007	12/31/9999
*	Sanction	01/15/2008	12/31/9999	1	01/01/2007	01/10/2007
\bigotimes	Sanction	01/15/2008	12/31/9999	8	01/11/2007	12/31/9999

Implications for Joins: Traditional Fact \rightarrow SCD2

	WMS_CASE_FACT			
PK PK PK	CASE_NUMBER CASE_SUFFIX_ID CHANGE_EFF_DATE			
	END_EFF_DATE CASE_TYPE FS_CASE_STATUS_CODE etc			

	SSI_FACT
PK PK	RECIP_SSN CHANGE_EFF_DATE
	END_EFF_DATE APPEAL_DATE APPEAL_REASON etc

- Select a single day, no risk of multiplication
 - Fact date field BETWEEN change_eff_date AND end_eff_date
 - OR
 - end_eff_date = 12/31/9999

Implications for Joins: $SCD2 \rightarrow SCD2$

WMS_CASE_FACT				
PK PK PK	CASE_NUMBER CASE_SUFFIX_ID CHANGE_EFF_DATE			
	END_EFF_DATE CASE_TYPE FS_CASE_STATUS_CODE etc			

- Monster Dim to Monster Dim
 - dim1.change_eff_date
 <= dim2.end_eff_date</pre>
 - AND
 - dim1.end_eff_date >= dim2.change_eff_date
- May get multiple records in the time frame
- Count distinct is fine

Implications for Joins: Fact \rightarrow SCD2 \rightarrow SCD2

- Select a single day from each & every monster dim: Most recent or fact date
 - Any dim in the query without a single date condition could multiply sums.
- Here, we need SSN from dim1 and date from the fact.

Implications for Joins SCD2 \rightarrow SCD2 \rightarrow SCD2

Overlapping time periods

- ssi.change_eff_date <= ind.end_eff_date AND ssi.end_eff_date >= ind.change_eff_date AND
- ssi.change_eff_date <= cas.end_eff_date AND ssi.end_eff_date >= cas.change_eff_date AND
- cas.change_eff_date <= ind.end_eff_date AND cas.end_eff_date >= ind.change_eff_date
- >1 row per case line
- Circular join
- Count Distinct is OK

Date Logic Usage in Discoverer (Approximate)

- Discoverer has optional "Most recent" filter for each SCD2
- Historical analysis training allows users to do a variety of queries
- Sometimes users make mistakes

Aggregate Measure Usage in Discoverer

Project Requirements

- Create access to the data available in Discoverer.
- Give users capabilities from Discoverer, with usability improvements from OBIEE.
- Maintain existing flexibility in date logic, while improving usability.
- Add commonly used aggregate measures, while supporting many users' attribute-only focus.
 - Don't worry about aggregate fact tables.
- Design one business model across sources to serve *all* ad hoc authors across the enterprise.
- Minimize changes and additions to the database and ETL.

System/Platform Info

System Component	Most of Project	Very Recent Upgrade
OBIEE Product Version	11.1.1.6.2	11.1.1.7.1
Operating System/Version	Oracle Solaris on SPARC (64-bit) – 10	Oracle Solaris on SPARC (64-bit) – 11
Database/Version	Oracle Database - Enterprise Edition 11.2.0.3	Oracle Database - Enterprise Edition 11.2.0.3

Physical Layer: Always Use Aliases

- More on this later, but it's important.
- Find naming conventions that work for your team.

Physical Layer: Avoid Opaque Views

- WMS_PAYEE_ is one example
- Rather than forcing OBIEE to include all of those tables, let it decide which is best.
- We have a lot of complex joins in the physical layer to handle this.

Physical

BMM: Facts vs. Dims

- Same Physical Layer Alias
- Claim Dim
 - Attribute columns only
 - Has logical business field primary key
- Claim Fact
 - Aggregate measure columns only
 - No key

BMM: All dims in hierarchies

- Create default logical dimension hierarchy
 - Create BMM tables and joins, snowflake is ok
 - Create correct logical keys
 - Right click on dim closest to the fact (MDW_Claim_Dim)
 - Choose: Create Logical Dimension > Dimension with Level Based Hierarchy
- Add levels as desired, keeping same total and detail levels on all paths
- OBIEE may drop filters on dims that aren't in hierarchies.

Jusiness Model and Mapping				
⊡~ 📦 dataSmart				
Ē∽ 🕍 MDW Payment Date				
🗄 🕍 MDW Service Date				
Ė⊶🙆 MDW_Claim_Dim				
🚊 🖵 MDW_Claim_Dim Total				
How CD_Category_of_Service				
⊕ L ₁ MDW_CD_Formulary				
😥 🧤 MDW_CD_Primary_Diagnosis				
🖻 🦾 MDW_CD_Procedure				
- 🔎 Procedure Code				
🛛 🗾 Procedure Desc				
🖻 🗓 MDW_Claim_Dim Detail				
🚽 💭 Claim Transaction ID				
💭 💭 Segment Sequence Number				
Image: MDW_CD_Recip_MA_Coverage				
😟 🧤 MDW_CD_Secondary_Diagnosis				
🕀 🖓 PVR Geography				

Presentation: Names and Descriptions

Presentation Column - Payment Status Desc SSI		- 🗆 🗙
General Aliases		
Name: Payment Status Desc SSI		Permissions
🔽 Use Logical Column Name		
Custom display name VALUEOF(NQ_SESSION.CN_DataSmart_SSI_Key_Elements_Payment	t_Status_Desc_SSI)	
Logical Column: ["dataSmart"."SSI_CD_Payment_Status"."Payment Status Desc SSI"		Edit
Custom description VALUEOF(NQ_SESSION.CD_DataSmart_SSI_Key_Elements_Payment	_Status_Desc_SSI)	
Hide object if		
Description:		
Description of SSI payment status and reason		
		T

Workarounds and Rules We Break

Physical Layer: Use aliases instead of circular joins

Time, Geography and Case Dims Combined in BMM

Default Most Recent, Step 1: More Aliases

- For each slowly changing dimension, create two aliases: one for current and one for history.
- History has end_eff_date as part of the primary key, current does not.
- Without correct keys, OBIEE has no way to choose the better table.

Default Most Recent, Step 2: Joins Among Aliases

- Physical layer joins do *not* include date conditions.
 - Many-to-many "complex" joins to history aliases.
 - Simple foreign key joins to the current aliases.

Default Most Recent, Step 3: Combined Logical Tables

- One BMM folder for each slowly changing dimension.
- Two logical table sources, one for history and one for current.
- Logical key is the same as the <u>Current</u> primary key.

Default Most Recent, Step 4: Set Where Clause on the Current LTS

- In the <u>current</u> logical table source,
- On the "Content" tab,
- Add a "WHERE clause" on the field that is part of the history primary key, but not the current:
- end_eff_date = 12/31/9999

.ogical Table Source - WMSC_DIM_CURR_WMS_CASE		- 🗆 X
General Column Mapping Content Parent-Child Settings		
Aggregation content, group by Logical Level		•
Show mapped Show unmapped		More
Logical Dimension Logical Level		
Fragmentation content:		
		- <u> </u>
This source should be combined with other sources at this level		
Use this "WHERE clause" filter to limit rows returned (exclude the "WHERE"):		
"RW_EWDV".""."DATASMART"."WMSC_DIM_CURR_WMS_CASE"."END_EFF_DATE" = DATE '	9999-12-31'	× .
Select distinct values		
ОК	Cancel	Help

Default Most Recent, Step 5: Map "History" Attribute only to the History LTS

Logical Column - Include CASE History

General Column Source Aggregation Levels

- Create a new logical column.
- On the Column
 Source tab, map it to
 the <u>history</u>
 LTS, but not
 the current.
- We use a constant,
 Char(89) or Y.

Type: jenen		Length: J'
Derives from:		
char(89)		
Column Source Type		
 Derived from physical mappings 		
Show all logical sources		
Lesied Table Course	l Manada a	
WMS CUBB Case Eact	Mapped as	
WMS HIST Case Fact	Char(89)	
	()	
		Edit
O Derived from existing columns using an expression		

- 🗆 🗙

"Maintain existing flexibility in date logic, while improving usability."

- Most recent is now the default filter.
- To access historical records, add "Include History" from the History subfolder.
- Consider all parent-folders (separate SCD2s) in your analysis.
 - Discoverer had Most Recent in many folders.
 - OBIEE has History in many folders.
 - Include it for all folders where it's needed!
- Don't forget your filters!
 - Don't write the zipper yourself.
 - Try historical filters saved in "OBIEE Tools".

Lying to OBIEE, Part 1: BMM Keys and Hierarchies

- History Logical Table Sources are *more* detailed than the key for their logical tables.
 - So, they do not have their own level in a hierarchy, AND
 - You cannot assign levels to the LTS's for these dims.
- This was a choice because drilling into history in this way doesn't make sense for our users.

Lying to OBIEE, Part 2: Treating Factless Facts as Dims in the BMM

- We have attribute-only "facts" in NYCWAY database tables.
- Our users tend to focus on attribute only queries.
- To allow users to combine attributes from different NYCWAY "Fact" tables in a single query, we treat them as dims in the BMM.
- Lies involved:
 - Many to 1 joins are actually 1 to Many
 - Inadequate primary keys allow for foreign key joins
 - Only works with count distinct measures.

