

# Oracle ZFS Storage Appliance for Exadata Backup & Recovery

**Husnu Sensoy** 

Global Maksimum Data & Information Technologies





### Husnu Sensoy

- Chief VLDB Specialist in Global Maksimum Data & Information Technologies
- Oracle ACED in BI domain
- Oracle Magazine DBA of the Year 2009



# Global Maksimum Data & Information Technologies

#### Just focus on Data & Information in it...

- Three strategic areas we focus on
  - Complex Event Processing
    - Oracle CEP
    - Making 500 different business decisions for 1.2 Millions of events in a second
  - Data Mining
    - Oracle Data Mining and Oracle R Enterprise Edition
    - Churn Prediction Models for Telcos
    - Marketing Target Selection Models
  - Large scale data analytics (what people say Big Data)
    - Ten billion rows in a week
    - Exadata
      - I20+TB Exadata migration from UNIX systems.
      - Exadata Master Class all over the EMEA region for Exadata customers, Oracle partners, and Oracle at the region.



### Backup & Recovery Challenges of Exadata Environments

- RMAN still does not provide a mechanism to compress image backups
- No footprint optimized way to store multiple copies of the same data
- RAC node utilization during ternary backup
- Backup replication to remote site



### ZFS Storage Appliance

10.000 feet...

ZFS

Oracle Solaris

Hardware



### **ZFS Hybrid Storage Pool**

A Combination of different skills









```
run {
    RESTORE DATABASE FROM TAG WEEKLY_FULL_BCKP;
}
```





```
run {
    RESTORE DATABASE FROM TAG WEEKLY_FULL_BCKP;
}

run {
    [SET UNTIL SCN x|SEQUENCE x|TIME 'x']
    RECOVER DATABASE FROM TAG DAILY_INC_BCKP;
}
```







### Storage Overhead of Image Copies

#### **ZFS Storage File System Level Compression**

One problem with using incrementally updated backup strategy is that RMAN does not provide a mechanism to compress image copies.

But ZFS provides a file system level compression mechanism





### Compression

**ZFS Compression vs RMAN Compression over uncompressed data** 







### Flexibility to Travel in Time

ZFS Compression can let you to keep multiple image copies?





### Flexibility to Travel in Time (Con't)

ZFS Compression can let you to keep multiple image copies?

No matter how much you compress, keeping multiple copies of your database is not a clever idea in terms of utilizing your ZFS Storage Appliance.

ZFS has a solution to that problem also:

**Deduplication** 

Assume a database of size 10 TB with a daily of 500 GB. By previous slide I wish to store:

- •1 Full + 1 incremental = 10.5 TB
- •1 Full + 7 incremental = 13.5 TB
- •1 Full + 15 incremental = 17.5 TB
- •1 Full + 30 incremental = 25 TB
- •Total of 63.5 TB

This value theoretically can be reduced to

•1 Full + 30 incremental = 25 TB using deduplication

| Properties |                                | ☐ Inherit from project       |
|------------|--------------------------------|------------------------------|
|            | Mountpoint                     |                              |
|            | Read only                      | <b>₽</b> □                   |
|            | Update access time on read     | ₽ □                          |
|            | Non-blocking mandatory locking | a 🗆                          |
|            | Data deduplication             |                              |
|            | Data compression               | a Off ▼                      |
|            | Checksum                       | ₽ Fletcher4 (Standard)       |
|            | Cache device usage             | ■ Do not use cache devices ▼ |
|            | Synchronous write bias         | □ Throughput ▼               |
|            | Database record size           | △ 128k ▼                     |
|            | Additional replication         | ■ Normal (Single Copy)       |
|            | Virus scan                     | 4 □                          |
|            | Prevent destruction            | ₽ □                          |
|            |                                | _                            |



### Replication with ZFS Appliance

#### **Painless Data Replication**





### **Optimizing Ternary Backups**

#### **Silent Tape Backup by NDMP**







# **Configuration & Management Tips**





## ZFS Storage Configuration & Management Best Practices

- ZFS Storage Share Configuration
  - Remove Update access time on read attribute.
  - Do not use cache devices for neither metadata nor data caching.
  - Set Synchronous write bias to Throughput
  - Ensure that your ZFS Database record size is 128K
  - Design multiple shares differentiated depending on their characteristics
  - Cleanup unused snapshot & clones.
- Ensure that you use DNFS client.
- Keep in mind that deduplication & ZFS compression require extra CPU power.
- Use RMAN compression whenever possible unless you have a bottleneck on Exadata RAC nodes.
  - Prefer LOW or MEDIUM for performance
- To utilize backup parallelism use SECTION option for BIGFILE tablespace data files



# Monitoring Performance using Oracle Storage Analytics

#### Keep your eyes on 3 metrics





#### **Monitoring Performance using SQL**

#### **Query RMAN Catalog Views**

```
set linesize 5000
column filename format a50
set pagesize 64
select bai.inst id,
       bai.sid,
       bai.status,
       buffer count,
       trunc((sysdate - open time) * 24 * 60,2) elaps,
       substr(filename, instr(filename, '/',1,3)+1) filename,
       nvl(effective bytes per second,
           (bytes / ((sysdate - open_time) * 24 * 3600))) / 1024 / 1024 mb per sec,
       to char(bytes / 1024 / 1024, '09999.99') mb sofar,
       to char(bytes / 1024 / 1024/10.24/32, '999.99') "%",
       total bytes / 1024 / 1024 / 1024 total gb,
       io count
  from qv$backup async io bai
 where bai.type = 'INPUT'
   and close time is null
 order by "%" desc;
```



#### **Backup Performance**

#### A real value based on previous generation 7410





# Two Real Backup Strategies using ZFS Storage Appliance







#### **Creating your FRA on ZFS Storage Appliance**

 A system already running on NFS or another storage with a comparable performance.



- A system already running on NFS or another storage with a comparable performance.
- A single disk copy is sufficient.



- A system already running on NFS or another storage with a comparable performance.
- · A single disk copy is sufficient.
- Quick recovery from failure is necessary in case of a primary storage loss.



- A system already running on NFS or another storage with a comparable performance.
- · A single disk copy is sufficient.
- Quick recovery from failure is necessary in case of a primary storage loss.
- · Database size very small with compared to ZFS Storage pool size.



- A system already running on NFS or another storage with a comparable performance.
- · A single disk copy is sufficient.
- Quick recovery from failure is necessary in case of a primary storage loss.
- Database size very small with compared to ZFS Storage pool size.





#### **Creating your FRA on ZFS Storage Appliance**

- A system already running on NFS or another storage with a comparable performance.
- · A single disk copy is sufficient.
- Quick recovery from failure is necessary in case of a primary storage loss.
- Database size very small with compared to ZFS Storage pool size.

ALTER SYSTEM SET DB RECOVERY DEST='/export/fra';





- A system already running on NFS or another storage with a comparable performance.
- · A single disk copy is sufficient.
- Quick recovery from failure is necessary in case of a primary storage loss.
- Database size very small with compared to ZFS Storage pool size.

```
RUN {
    RECOVER COPY OF DATABASE
       WITH TAG 'DAILY_BACKUP';
    BACKUP
       INCREMENTAL LEVEL 1
       FOR RECOVER OF COPY WITH TAG 'DAILY_BACKUP'
       DATABASE;
}
```





- A system already running on NFS or another storage with a comparable performance.
- · A single disk copy is sufficient.
- Quick recovery from failure is necessary in case of a primary storage loss.
- Database size very small with compared to ZFS Storage pool size.

```
RUN {
    RECOVER COPY OF DATABASE
        WITH TAG 'DAILY_BACKUP';
    BACKUP
        INCREMENTAL LEVEL 1
        FOR RECOVER OF COPY WITH TAG 'DAILY_BACKUP'
        DATABASE;
}

RUN {
    ALTER DATABASE MOUNT;
    SWITCH DATABASE TO COPY;
    RECOVER DATABASE;
    ALTER DATABASE OPEN;
}
```







**Multiple Image Copies for Multiple Recovery Points** 

• Quick recovery using SWITCH is not an option



- Quick recovery using SWITCH is not an option
- · Two recovery capabilities are necessary



- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now



- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week



- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week
- ZFS Storage pool is at comparable size with production size.



- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week
- ZFS Storage pool is at comparable size with production size.





#### **Multiple Image Copies for Multiple Recovery Points**

ALTER SYSTEM SET DB RECOVERY DEST='/export/fra';

- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week
- ZFS Storage pool is at comparable size with production size.





```
ALTER SYSTEM SET DB_RECOVERY_DEST='/export/fra';

RUN {
    RECOVER COPY OF DATABASE
       WITH TAG 'DAILY_BACKUP';
    BACKUP
       INCREMENTAL LEVEL 1
       FOR RECOVER OF COPY WITH TAG 'DAILY_BACKUP'
       DATABASE TO DESTINATION '/export/inc';
}
```

- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week
- ZFS Storage pool is at comparable size with production size.





```
RUN {
    RECOVER COPY OF DATABASE
        WITH TAG 'DAILY_BACKUP';
    BACKUP
        INCREMENTAL LEVEL 1
        FOR RECOVER OF COPY WITH TAG 'DAILY_BACKUP'
        DATABASE TO DESTINATION '/export/inc';
}
```

```
RUN {
    ALTER DATABASE MOUNT;
    RESTORE DATABASE FROM TAG 'DAILY_BACKUP'
    RECOVER DATABASE;
    ALTER DATABASE OPEN;
}
```

- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week
- ZFS Storage pool is at comparable size with production size.





```
ALTER SYSTEM SET DB_RECOVERY_DEST='/export/fra';
```

```
RUN {
    RECOVER COPY OF DATABASE
       WITH TAG 'DAILY_BACKUP';
    BACKUP
    INCREMENTAL LEVEL 1
    FOR RECOVER OF COPY WITH TAG 'DAILY_BACKUP'
    DATABASE TO DESTINATION '/export/inc';
}
```

```
RUN {
    ALTER DATABASE MOUNT;
    RESTORE DATABASE FROM TAG 'DAILY_BACKUP'
    RECOVER DATABASE;
    ALTER DATABASE OPEN;
}
```

- Quick recovery using SWITCH is not an option
- Two recovery capabilities are necessary
  - To Just now
  - To somewhere in last week
- ZFS Storage pool is at comparable size with production size.

```
RUN {
    SET COMPRESSION ALGORITHM 'MEDIUM';
    RECOVER COPY OF DATABASE
    WITH TAG 'WEEKLY_BACKUP'
    UNTIL TIME 'SYSDATE-7';
    BACKUP AS COMPRESSED BACKUPSET
    INCREMENTAL LEVEL 1
    FOR RECOVER OF COPY WITH TAG 'WEEKLY_BACKUP'
    DATABASE TO DESTINATION '/export/inc';
}
```





### **Thanks**





husnu.sensoy@globalmaksimum.com



http://husnusensoy.wordpress.com



husnu.sensoy@gmail.com



@husnusensoy