
Oracle System Performance Analysis
Using Oracle Event 10046
Cary V. Millsap
Hotsos Enterprises, Ltd.

Jeffrey L. Holt
Hotsos Enterprises, Ltd.

Copyright © 2002 Hotsos Enterprises, Ltd. All rights reserved.

Revision History

Revision 1.2 (2d beta draft) 18 March 2002 cvm

Revision 1.1 (beta draft) 14 March 2002 cvm

Revision 1.0 (alpha draft) 13 February 2002 cvm

Table of Contents

1. Executive Summary
2. Introduction to Oracle Event 10046
3. Levels of Event 10046 Tracing
4. Activating and Deactivating Event 10046 Tracing

4.1. Tracing Your Own Session
4.2. Tracing Someone Else's Session (Oracle release 8.1.6 and newer)
4.3. Tracing Someone Else's Session (Oracle releases prior to 8.1.6)

5. Finding Your Trace File
6. Interpreting Your Trace File
7. Using Event 10046 with Multiplexing Architectures

7.1. Oracle Multi-Threaded Server (MTS)
7.2. Application Server Middle Tiers

8. Known 10046-Related Oracle Side Effects
8.1. Oracle bug 1210242
8.2. Rumors of Oracle instance failure

9. Examples
10. Resources
11. Acknowledgments

1. Executive Summary

In more than a hundred performance improvement opportunities, Hotsos staff have taught
customers how to resolve system performance problems that had eluded solution for
months or years. The whole process—including data collection, analysis, research, and
repair—typically consumes no more than a few hours. The new method is based upon
Oracle's ability to instrument its own performance with a standard Oracle product feature

that has been available since release 7.0.12 (circa 1992). This document will help you
understand the value of the detailed SQL statement timing data produced by Oracle's so-
called event 10046. The paper also details how to activate event 10046 data collection.

2. Introduction to Oracle Event 10046

The Oracle database kernel is instrumented with over four hundred so-called “pseudo-
error debugging events.” [1] One of the most important of these events for the system
performance analyst is event 10046, “enable SQL statement timing.” Activating this
event for an Oracle session instructs the Oracle kernel to print detailed timing
information for that session to an Oracle trace file. A sample of 10046 data is provided
later in this document.

Event 10046 is an attribute of an Oracle session that you may set at different levels,
depending upon the type of diagnostic output you wish to obtain. Many database
administrators are already familiar with Oracle's sql_trace facility, which emits
performance information about Oracle parse, execute, fetch, commit, and rollback
database calls. Using sql_trace is actually the equivalent of using event 10046 set at
level 1.

However, there are entire categories of system performance problems that cannot be
diagnosed with level-1 data alone. For example, you cannot unambiguously diagnose and
repair a system plagued by contention for latches, locks, networks, or even storage
devices by looking only at SQL trace data. Event 10046 takes Oracle performance
instrumentation a significant step further by detailing the Oracle kernel's executions of
over two hundred internal function calls.

Upon this additional timing detail, Hotsos researchers have constructed an efficient
method that reliably solves system performance problems in most situations with no
further data collection required beyond the initial event 10046 data. Oracle insiders have
used event 10046 data since the early 1990s to diagnose system performance problems.
However, the broader community of database administrators have not embraced 10046
until recently, for at least the following reasons:

• Technology. The syntax required to activate event 10046 is cumbersome and not
well documented. In the absence of good tools to help analyze the output, people
have found event 10046 data difficult to interpret. Furthermore, until recently,
insufficient research had been performed to verify whether performance
optimization methods based upon event 10046 data could actually be reliable.[2]

• Culture. There is cultural intertia at work as well. Established experts have little
external motive to overhaul their ways of working. Newcomers to the field of
Oracle performance optimization are probably most influenced by the most
popular “Oracle tuning” authors, who haven't improved the Oracle performance
state of the art since the 1980s.

Oracle professionals are attacking both fronts today. Oracle Corporation is improving the
accessibility of event 10046 data with enhancements to the Oracle Trace facility in

release 9. And through presentations and publications delivered internationally,
thousands of Oracle database administrators are finally receiving the message that
optimizing user response times is much better for business than optimizing system ratios.

The performance diagnostic value of 10046 data is extraordinary. This document is
designed to help the typical database administrator employ this tool in the quest for
faster, more efficient, and hence more scalable Oracle systems.

3. Levels of Event 10046 Tracing

You can think of the event 10046 “level” attribute associated with an Oracle session as a
4-bit flag whose bits have the following meanings:

Table 1. Event 10046 tracing levels

Level

Decimal Binary
Function

1 0001 Emit statistics for parse, execute, fetch, commit, and rollback
database calls (standard sql_trace)

2 0010 Unknown
4 0100 Emit values for SQL bind variables (also called “placeholders”)

8 1000 Emit statistics for Oracle kernel internal function calls (also called
“wait events”) listed in v$event_name

These levels can be combined as if by a bitwise or function to produce combinations of
data in an Oracle trace file. For example, a level-12 trace combines the effects of level-4
and level-8 tracing. Strangely, activating any non-zero tracing level also activates level-1
tracing. Therefore, tracing at levels 4, 8, and 12 are exactly equivalent to tracing at
levels 5, 9, and 13, respectively: all these levels include the standard sql_trace output.
Performance analysts who use event 10046 tracing almost always use either level 8 (wait
events) or level 12 (wait events plus bind values). Specifying level 9 or 13 provides the
modest advantage of making your 10046-savvy colleagues think that you know
something they don't know. We presently know of no other benefit to adding the “1”.

Warning

Note that the level-4 tracing option opens new possibilities for breaches of
data security, because it records database data values into text files in your
OS filesystem.

4. Activating and Deactivating Event 10046 Tracing
In order for your event 10046 data to be valuable, you must first ensure that the session is
capable of computing its own timing statistics. If you fail to enable timed statistics
computations, then your performance data will contain zeros instead of true timing
information. This of course makes it much more difficult to use the data to improve end-

user response times. You manipulate a session's ability to time itself with the Oracle
parameter timed_statistics. This parameter has been session-modifiable since
release 7.3.

Next, for the resulting output to be complete, you must ensure that the size of the
session's trace file is not arbitrarily restricted. You manipulate a session's maximum trace
file size with the Oracle parameter max_dump_file_size. This parameter has also been
session-modifiable since release 7.3.

There are several ways to activate event 10046 for a chosen session. Which one to use is
primarily a function of whose session you wish to trace. Tracing your own session is
straightforward; simply use alter session commands to specify the event and level of
tracing that you desire. For someone else's session (for example, an application user's
session), Oracle provides packaged procedures to do the job.

Deactivating event 10046 is simple, requiring similar syntax to activation. However, in
many cases the performance analyst should not explicitly deactivate 10046 data
collection. The Oracle kernel writes certain data to the trace file only upon cursor close.[3]
If you can allow a session to disconnect naturally, then there is no need to deactivate
tracing for the session. If not, however, then you should deactivate tracing explicitly,
such as in the case of a persistent service (an Oracle Applications concurrent manager
process, for example).

4.1. Tracing Your Own Session

Tracing your own session is a simple process that is the same, regardless of whether your
application is SQL*Plus, Pro*C, OCI, or any other client program. To activate and
explicitly deactivate level-8 tracing for your own Oracle session, execute the following
SQL statements:
alter session set timed_statistics=true
alter session set max_dump_file_size=unlimited
alter session set events '10046 trace name context forever, level 8'
...
alter session set events '10046 trace name context off'

Note that some Oracle ports (notably Oracle7 and Oracle8i for Microsoft Windows) do
not support the unlimited keyword value. For these ports, simply set
max_dump_file_size to a large integer. On the 32-bit implementations of Oracle in our
laboratory, the maximum value you can specify is 231 � 1 = 2,147,483,647.

4.2. Tracing Someone Else's Session (Oracle release 8.1.6 and newer)

To trace someone else's session, first your must obtain the session id (v$session.sid)
and serial number (v$session.serial#) for the session you wish to trace. Then activate
tracing for the chosen session. To activate and explicitly deactivate level-8 tracing for the
specific session identified by (sid, serial#), execute the following SQL statements:
exec sys.dbms_system.set_bool_param_in_session(sid, serial#,
'timed_statistics', true)

exec sys.dbms_system.set_int_param_in_session(sid, serial#,
'max_dump_file_size', 2147483647)
exec sys.dbms_system.set_ev(sid, serial#, 10046, 8, '')
...
exec sys.dbms_system.set_ev(sid, serial#, 10046, 0, '')

Some Oracle Metalink bulletins describe dbms_system.set_ev as “unsupported,”
describing that customers should use dbms_support.start_trace_in_session instead.
However, dbms_support is particularly difficult to obtain, and we have learned that
dbms_support.start_trace_in_session is actually implemented as a call to set_ev
anyway.

By contrast, dbms_system is shipped with the standard Oracle distribution. Oracle
support analysts recommend using set_ev in several Metalink bulletins, and Hotsos
customers have used set_ev in hundreds of performance improvement projects without
incident.

4.3. Tracing Someone Else's Session (Oracle releases prior to 8.1.6)

The packaged procedures to set Oracle parameters in someone else's session are not
distributed with Oracle releases prior to 8.1.6. However, it is easy to set the necessary
parameters instance-wide. Of course, you have the option of changing them again when
you are finished tracing. However, it is not possible through Oracle9i to read the current
value of another session's session-level parameter setting; it is thus impossible to record a
parameter's current value so that it can be restored later to that value.

To activate and explicitly deactivate level-8 tracing for the specific session identified by
(sid, serial#), execute the following SQL statements:
alter system set timed_statistics=true
alter system set max_dump_file_size=unlimited
exec sys.dbms_system.set_ev(sid, serial#, 10046, 8, '')
...
exec sys.dbms_system.set_ev(sid, serial#, 10046, 0, '')

5. Finding Your Trace File
Once you trace a session, your next task is to identify the trace file (or files) where your
trace data were written. The value of the Oracle parameter user_dump_dest contains the
name of the directory into which user sessions write their trace files (user sessions are
sessions for which v$session.type='USER'). The value of the Oracle parameter
background_dump_dest contains the name of the directory into which background
sessions write their trace files (background sessions are sessions for which
v$session.type='BACKGROUND').

Once you have identified the directory in which your trace file resides, you need to
identify the name of the file. Unfortunately, the various porting groups at Oracle
Corporation have not settled upon a file naming standard. Therefore, it can be difficult to
write a platform-independent tool that can predict what the trace file for a given session
will be called. For example, we have observed the following:

Table 2. Apparent Oracle trace file naming conventions

Oracle port Trace file name pattern

Linux ora_SPID.trc

HP-UX ora_SPID_SID.trc

Compaq OpenVMS ora_INSTANCE_(fg|bg)_oracle_SID.trc

Microsoft Windows ora_NUMBER.trc

The most reliable way to determine the name of your trace file is as follows:

Procedure 1. Procedure for finding the trace file for a given OS process id (spid)

1. Identify the directory in which your trace file was written.

2. List the contents of that directory, ordered by descending file modification time
(for example, using ls -lt in Unix).

3. For each file in that list,

a. Search the preamble of the file for the line containing the string “pid”
(Unix, Linux, OpenVMS) or “thread id” (MSWin32). The preamble
consists of all the lines up to the line that begins with the string “***”.

b. If the number following this string matches the value of v$process.spid
for your chosen session, then you have found the correct trace file; stop
searching.

4. If you have exhausted the file list without finding a matching spid, then the file
you are looking for does not exist.

The Hotsos Trace File Dæmon (trcfiled), part of the free Sparky distribution, is open-
source Perl code that executes exactly this function. This algorithm is very efficient even
for directories with large numbers of trace files in them, as long as the trace file you are
seeking actually exists.

6. Interpreting Your Trace File

Once you have identified your trace file, this is where the real progress begins. For most
cases, the trace file contains all of the information you will need to diagnose and repair
the session's performance problem. However, it can be difficult to interpret raw trace
data, especially when the size of the raw trace file is extremely large. There are several
ways that you can interpret your trace file:

• Inspect the file visually. There is excellent documentation on Oracle Metalink[4]
that describes the meaning of each field in the raw trace data. However, it is
difficult to interpret raw trace data by inspection when the raw trace file is
extremely large.

• Construct a software tool using, for example, Perl or awk, that summarizes the
content of the file for you. The Hotsos Clinic includes instruction that helps
facilitate this process.

• Use a prepackaged software tool to summarize and format the raw trace data. A
few such tools are available today, including Oracle's tkprof tool that is shipped
as part of the Oracle standard distribution. However, tkprof ignores level-4 and
level-8 trace data until release 9.0.1. Even in 9.0.1, tkprof still produces wait
event information in a very ratio-centric way. A Turkish company named Unal
Bilism provides online access to the itrprof SQL analyzer, which performs a
similar function. The Hotsos Profiler is the tool that Hotsos developers have
constructed to maximize the value of event 10046 data.

7. Using Event 10046 with Multiplexing Architectures

Oracle's session-based model for SQL tracing is not particularly well-suited for the
tracing of transactions that are multiplexed across Oracle server processes, either by the
Oracle Multi-Threaded Server (MTS) or application server middle tiers. The 10046 data
are just as valuable in this architecture as in any other; the issue is that it becomes more
difficult to obtain.

Fortunately, this appears to be an area in which Oracle is paying particular attention. The
Oracle Trace documentation for Oracle release 9.0.1 is definitely encouraging with its
description of the migration Oracle Server Event.[5]

7.1. Oracle Multi-Threaded Server (MTS)

Oracle Corporation introduced its Oracle Multi-Threaded Server (MTS) in release 7.0 to
reduce the number of OS process instantiations required to service large numbers of
connected users. Instead of every Oracle connection request motivating a fork and exec
of a new dedicated Oracle server process, Oracle MTS allows a large number of user
processes to share the services of a smaller number of server processes.

The challenge this presents to 10046 data users is that the MTS architecture causes the
database calls issued by a single user to be distributed across potentially several different
Oracle trace files. For example, a client program's execute call may be serviced by
shared server process number 3, and hence the execute call's 10046 data will be listed in
trace file number 3. The same client program's first fetch call might be serviced by
shared server number 7, and hence the parse call's 10046 data will be listed in trace file
number 7. The program's next fetch call might be serviced by a different shared server
process again, and so on.

As a result, to assemble all of the 10046 data for a given Oracle user connection in an
MTS architecture requires an operation that very closely resembles an Oracle sort-merge
join operation executed upon multiple trace files. Each session's activity in an Oracle
trace file is identified in the trace file text by the motivating Oracle connection's unique
session id. Therefore, it is straightforward to create a “filter” that returns only those parts
of a trace file that are associated with a specified session. Furthermore, each session's

segment of 10046 data in a trace file has a timestamp marking when the segment was
written to the trace file. Therefore, it is also straightforward to sort a session's 10046 data
obtained from several trace files into a time-ordered sequence of events.

7.2. Application Server Middle Tiers

Connection pooling architectures can pose a difficulty to the collection of 10046 trace for
a specified user session by concealing the origin of a database call from the database.
Figure 1 shows how. In this figure, the application server middle tier accepts HTTP
requests from the five browsers in the user community. Many of these HTTP requests
motivate the application server to issue database parse, execute, and fetch calls.
However, the application server conceals the identity of the user from the database.
Therefore, unless the application source code or the application server is specifically
instrumented to record the identity of a 10046 trace file line, the reader of the 10046 data
will have no way of determining which user motivated which lines.

Figure 1. A connection pooling application architecture

In Figure 1, different database calls motivated by the browser at IP address 150.121.1.104
have been processed by each of the three different Oracle server processes, resulting in
data corresponding to browser 104 transactions (marked red) in each of the three trace
files. However, there is no way that the reader of each trace file can determine which
browser has motivated the database calls represented by the 10046 data. The application
server has concealed the identity of browser 104 from the database.

There are several ways to use 10046 data in spite of the difficulty imposed by connection
pooling:

• Instrument the application. The Oracle Trace facility provides the means for
tagging a user transaction so that it can be identified within the database
performance data. The downside of this option is that instrumenting your
application can be burdensome, if not practically impossible (e.g., in the case of
purchased, packaged applications). The upside is that according to the Oracle9i
documentation, Oracle Trace finally makes available the types of information that
previously only event 10046 revealed.

• Aggregate across application users. One of the distinctions of Hotsos training is
our admonition that averaging performance statistics across heterogeneous
transaction types adds ambiguity and hence difficulty to a performance problem
repair project. However, for homogeneous transaction types, averaging can be a
powerful tool. If all five of the browsers depicted in Figure 1 are executing the
same type of transaction, then an analyst can obtain perfectly legitimate
performance data by examining the content of any or all of the the trace files
shown.

For example, if all of the browsers had been running the same order entry form,
entering the same types of orders for some 10-minute interval, then aggrega ting

all of the trace files' content for that 10-minute interval and dividing by the
number of orders will produce legitimate per-order performance statistics.
Likewise, in this type of heterogeneous environment, examining the trace data for
any single trace file should reveal performance characterstics consistent with the
average.

Figure 2. Aggregating across similar transactions in a connection pooling
environment

• Isolate the application. Many times, it is possible to identify an end user's trace

data by isolating that user's database activity to a single dedicated Oracle server
process. For example, if you can create the scenario depicted in Figure 3, then you
have solved the data collection problem for browser 104.

The downside of this method is that if the performance of the original application
server program was in fact the root cause of your performance problem, then you
will have obscured that issue by routing your transactions through a different
middle tier process. However, if performance is drastically better for browser 104
after isolating it onto its own application server process, then you have observed a
strong indication that the performance problem was in the middle tier (and not in
the Oracle database) to begin with.

Figure 3. Isolating a user in a connection pooling environment

8. Known 10046-Related Oracle Side Effects
Using Oracle's 10046 trace data has proven to be remarkably free of side effects The only
negative side effects that we have found to date are listed here:

8.1. Oracle bug 1210242

This bug affects many Oracle8i releases. It causes Oracle not to share SQL statements
properly in the library cache. Patches are available. Consult Oracle Metalink for details.

8.2. Rumors of Oracle instance failure

Tracing the Oracle PMON background process is reputed to cause ORA-600 errors and
possibly instance failures. However, we have not yet found a Metalink bug number that
specifically links instance crashes with event 10046. The good news is that the rumors of
trouble are moot in most situations; the need to execute a 10046 trace upon PMON
should be exceedingly infrequent.

9. Examples

Figure 4 shows a complete Oracle trace file that includes event 10046 data. Lines that
begin with the string “WAIT” are specifically generated by the level-8 attribute of the
event 10046 trace. Other lines are present even with a standard sql_trace=true setting
for the session.

You can see from the trace data that the session motivating these event 10046 data lines
was a SQL*Plus session that executed the following statements:
alter session set events '10046 trace name context forever, level 8'
select count(*) from a
alter session set events '10046 trace name context off'

The extraordinary value of Oracle event 10046 output is how clearly it illustrates exactly
what the Oracle kernel is doing on behalf of your database calls. There is simply no better
way to understand exactly what an Oracle session is doing with your users' time.

Figure 4. A complete 10046 level-8 trace file for a simple session
Dump file C:\oracle\admin\ora817\udump\ORA00684.TRC
Tue Feb 12 15:22:03 2002
ORACLE V8.1.7.0.0 - Production vsnsta=0
vsnsql=e vsnxtr=3
Windows 2000 Version 5.0 Service Pack 1, CPU type 586
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production
Windows 2000 Version 5.0 Service Pack 1, CPU type 586
Instance name: ora817

Redo thread mounted by this instance: 1

Oracle process number: 9

Windows thread id: 684, image: ORACLE.EXE

*** 2002-02-12 15:22:03.426
*** SESSION ID:(8.1565) 2002-02-12 15:22:03.416
APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240
=====================
PARSING IN CURSOR #1 len=69 dep=0 uid=20 oct=42 lid=20 tim=40950208
hv=589283212 ad='38d4734'
alter session set events '10046 trace name context forever, level 8'
END OF STMT
EXEC #1:c=1,e=1,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=40950208
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 444 p1=1111838976 p2=1
p3=0
=====================
PARSING IN CURSOR #1 len=23 dep=0 uid=20 oct=3 lid=20 tim=40950654
hv=2180270315 ad='38d7678'
select count(*) from a
END OF STMT
PARSE #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=40950654
EXEC #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=40950654
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0

WAIT #1: nam='file open' ela= 0 p1=0 p2=0 p3=0
WAIT #1: nam='db file scattered read' ela= 6 p1=7 p2=10 p3=7
WAIT #1: nam='db file scattered read' ela= 4 p1=7 p2=17 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=25 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=33 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=41 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=49 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=57 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=65 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=73 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=81 p3=8
WAIT #1: nam='db file scattered read' ela= 4 p1=7 p2=89 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=97 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=105 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=113 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=121 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=129 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=137 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=145 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=153 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=161 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=169 p3=8
WAIT #1: nam='db file scattered read' ela= 3 p1=7 p2=177 p3=8
WAIT #1: nam='db file scattered read' ela= 3 p1=7 p2=185 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=193 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=201 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=209 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=217 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=225 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=233 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=241 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=249 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=257 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=265 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=273 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=281 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=289 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=297 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=305 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=313 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=321 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=329 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=337 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=345 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=353 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=361 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=369 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=377 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=385 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=393 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=401 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=409 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=417 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=425 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=433 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=441 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=449 p3=8

WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=457 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=465 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=473 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=481 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=489 p3=8
WAIT #1: nam='db file scattered read' ela= 1 p1=7 p2=497 p3=8
WAIT #1: nam='db file scattered read' ela= 0 p1=7 p2=505 p3=3
FETCH #1:c=10,e=52,p=498,cr=498,cu=5,mis=0,r=1,dep=0,og=4,tim=40950706
WAIT #1: nam='SQL*Net message from client' ela= 0 p1=1111838976 p2=1
p3=0
FETCH #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=40950706
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 961 p1=1111838976 p2=1
p3=0
STAT #1 id=1 cnt=1 pid=0 pos=0 obj=0 op='SORT AGGREGATE '
STAT #1 id=2 cnt=262144 pid=1 pos=1 obj=3176 op='TABLE ACCESS FULL A '
=====================
PARSING IN CURSOR #1 len=56 dep=0 uid=20 oct=42 lid=20 tim=40951667
hv=3475487367 ad='38d2dec'
alter session set events '10046 trace name context off'
END OF STMT
PARSE #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=40951667
EXEC #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=40951667

10. Resources

For detailed information about how to interpret raw trace data, visit Oracle Metalink
bulletin 39817.1.

Learn about the Hotsos Profiler at www.hotsos.com/products/profiler.

Learn about Sparky, the free event 10046 data collector, by visiting
www.hotsos.com/products/sparky.

For information about Hotsos Clinic, a three-day training event dedicated to instruction
on the Hotsos method for rapid performance problem diagnosis and resolution, visit
www.hotsos.com/training/clinic.

11. Acknowledgments

Our special thanks to Juan Loaiza, Roderick Mañalac, Anjo Kolk, Virag Saksena, and
Mogens Nørgaard. These gentlemen are prominent amoung the pioneers who invented,
implemented, documented, and inspired people to use Oracle's event 10046 data.

[1] You can find a listing of all such pseudo-error debugging events for your Oracle
environment by viewing the file on your system called
$ORACLE_HOME/rdbms/mesg/oraus.msg. Unfortunately, Oracle Corporation appears not
to provide this file on its Microsoft Windows ports.

[2] The Hotsos Clinic three-day training event describes in technical detail why
event 10046 output is far more valuable than most people once believed.

[3] Specifically, the Oracle kernel writes STAT lines, which provide SQL execution plan
information, only when a cursor closes.

[4] “Interpreting raw sql_trace and dbms_support.start_trace output,” 1998. Oracle
Metalink document id 39817.1.

[5] See the Oracle9i documentation at Oracle Technet for more information.

