
Prepared By : Manoj Kumar Joshi & Vikas Sawhney

General Agenda

Introduction to Hadoop Architecture

Acknowledgement

Thanks to all the authors who left their self-
explanatory images on the internet.

Thanks to bradhedlund.com and Cloudera Inc for
their blogs on Hadoop

We own the errors of course

History Of Hadoop

Hadoop was started by Doug Cutting to support two of his other

well known projects, Lucene and Nutch

Hadoop has been inspired by Google's File System (GFS) which

was detailed in a paper by released by Google in 2003

Hadoop, originally called Nutch Distributed File System (NDFS)

split from Nutch in 2006 to become a sub-project of Lucene. At

this point it was renamed to Hadoop.

History Of Hadoop (Contd.)

Distributed File System (DFS)

 A Distributed File System (DFS) is simply a classical model of

a file system distributed across multiple machines. The purpose is

to promote sharing of dispersed files.

 This is an area of active research interest today.

 Clients should view a DFS the same way they would a centralized

FS; the distribution is hidden at a lower level.

 A DFS provides high throughput data access and fault tolerance.

Why Hadoop ?

Hadoop infrastructure provides these capabilities

 Scalability

-Thousands of Compute Nodes

-Petabytes of data

 Cost effective

-Runs On Low Cost Commodity Hardware

 Efficient

-By distributing the data, Hadoop can process it in

parallel on the nodes where the data is located.

What Is Hadoop ?

 Open source software platform for scalable, distributed computing

Hadoop provides fast and reliable analysis of both structured data

and unstructured data

 Apache Hadoop software library is essentially a framework that

allows for the distributed processing of large datasets across

clusters of computers using a simple programming model.

Hadoop can scale up from single servers to thousands of

machines, each offering local computation and storage.

Hadoop Architecture

Hadoop Stack

Hadoop Ecosystems Projects

Hadoop Ecosystem Projects includes:
Hadoop Common utilities

Avro: A data serialization system with scripting languages.

Chukwa: managing large distributed systems.

HBase: A scalable, distributed database for large tables.

HDFS: A distributed file system.

Hive: data summarization and ad hoc querying.

MapReduce: distributed processing on compute clusters.

 Pig: A high-level data-flow language for parallel computation.

 ZooKeeper: coordination service for distributed applications.

Use Cases for Hadoop

 To aggregate “data exhaust” — messages, posts, blog entries,

photos, video clips, maps, web graph

 To give data context — friends networks, social graphs,

recommendations, collaborative filtering

 To keep apps running — web logs, system logs, system metrics,

database query logs

 To deliver novel mashup services – mobile location data,

clickstream data, SKUs, pricing

Hadoop Server Roles

Assumptions and Goals of HDFS

Hardware Failure

 Streaming Data Access (Best for batch processing)

 Large Data Sets

 Simple Coherency Model (write-once-read-many access model)

 Portability Across Heterogeneous Hardware and Software Platforms

HDFS (Hadoop Distributed File
System)

 A distributed file system that provides high-throughput access to

application data

HDFS uses a master/slave architecture in which one device

(master) termed as NameNode controls one or more other devices

(slaves) termed as DataNode.

 It breaks Data/Files into small blocks (128 MB each block) and

stores on DataNode and each block replicates on other nodes to

accomplish fault tolerance.

NameNode keeps the track of blocks written to the DataNode.

HDFS Cluster Architecture

HDFS Architecture

HDFS Cluster Architecture

HDFS Daemons

NAME NODE

 DATA NODE

 SECONDRY NAME NODE

Name Node

 Keeps the metadata of all files/blocks in the file system, and

tracks where across the cluster the file data is kept. It does not

store the data of these files itself. Kind of block lookup dictionary(

index or address book of blocks).

 Client applications talk to the NameNode whenever they wish to

locate a file, or when they want to add/copy/move/delete a file. The

NameNode responds the successful requests by returning a list of

relevant DataNode servers where the data lives

Name Node (Contd.)

Name Node (Contd.)
fsimage - Its the snapshot of the filesystem when NameNode started

Edit logs - Its the sequence of changes made to the filesystem after NameNode started

Data Node

 DataNode stores data in the Hadoop Filesystem

 A functional filesystem has more than one DataNode, with data

replicated across them

 On startup, a DataNode connects to the NameNode; spinning

until that service comes up. It then responds to requests from the

NameNode for filesystem operations.

 Client applications can talk directly to a DataNode, once the

NameNode has provided the location of the data

Data Replication

 Why need data replication ?

 HDFS is designed to handle large scale data in distributed environment

 Hardware or software failure, or network partition exist

 Therefore need replications for those fault tolerance

Replication (Contd.)
Replication factor

 Decided by users, and can be dynamically tuned.

How to Create replications efficiently ?
 Replication pipeline: Instead of single machine create replications, a

pipe line is applied
 Machine 1 make replication to machine 2, at the same time machine 2

make the replication to machine 3, etc.

Replication placement
 High initialization time to create replication to all machines
 An approximate solution: Only 3 replications

One replication resides in current node
One replication resides in current rack
One replication resides in another rack

Replication Pipeline

Rack Awareness

Data Node Failure
Data Node Failure Condition

If a data node failed, Name Node could know the blocks it

contains, create same replications to other alive nodes, and

unregister this dead node

Data Integrity

Corruption may occur in network transfer, Hardware failure etc.

Apply checksum checking on the contents of files on HDFS, and

store the checksum in HDFS namespace

If checksum is not correct after fetching, drop it and fetch another

replication from other machines.

Heartbeats and Re-Replication

Secondary Name Node

Not a failover NameNode

 The only purpose of the secondary name-node is to perform

periodic checkpoints. The secondary name-node periodically

downloads current name-node image and edits log files, joins

them into new image and uploads the new image back to the

(primary and the only) name-node

 Default checkpoint time is one hour. It can be set to one minute

on highly busy clusters where lots of write operations are being

performed.

Secondary Name Node (Contd.)

Name Node Failure

NameNode is the single point of failure in the cluster

 If NameNode is down due to software glitch, restart the machine

 If original NameNode can be restored, secondary can re-establish

the most current metadata snapshot

 If machine don’t come up, metadata for the cluster is

irretrievable. In this situation create a new NameNode, use

secondary to copy metadata to new primary, restart whole cluster

 Trick : Bring new NameNode up, but use DNS to make cluster

believe it’s the original one

Apache MapReduce

 A software framework for distributed processing of large data sets

 The framework takes care of scheduling tasks, monitoring them

and re-executing any failed tasks.

 It splits the input data set into independent chunks that are

processed in a completely parallel manner.

MapReduce framework sorts the outputs of the maps, which are

then input to the reduce tasks. Typically, both the input and the

output of the job are stored in a file system.

MapReduce Architecture

Map Task

Reduce Task

MapReduce Dataflow

 An input reader

 A Map function

 A partition function

 A compare function

 A Reduce function

 An output writer

MapReduce Daemons

 JOB TRACKER

 TASK TRACKER

JobTracker

 JobTracker is the daemon service for submitting and tracking

MapReduce jobs in Hadoop

 JobTracker performs following actions in Hadoop :

 It accepts the MapReduce Jobs from client applications

 Talks to NameNode to determine data location

 Locates available TaskTracker Node

 Submits the work to the chosen TaskTracker Node

TaskTracker
 A TaskTracker node accepts map, reduce or shuffle operations

from a JobTracker

 Its configured with a set of slots, these indicate the number of

tasks that it can accept

 JobTracker seeks for the free slot to assign a job

 TaskTracker notifies the JobTracker about job success status.

 TaskTracker also sends the heartbeat signals to the job tracker to

ensure its availability, it also reports the no. of available free slots

with it.

Hadoop Configuration
 Untar hadoop-*.**.*.tar.gz to your user path

About Version:

The latest stable version 1.0.4 is recommended.

 edit the file conf/hadoop-env.sh to define at least JAVA_HOME

to be the root of your Java installation

 edit the files to configure properties:

conf/core-site.xml:

<configuration>

<property>

<name>

fs.default.name

</name>

<value>

hdfs://localhost:9000

</value>

</property>

</configuration>

conf/hdfs-site.xml:
<configuration>

<property>
<name>

dfs.replication
</name>
<value>

1
</value>

</property>
</configuration>

conf/mapred-site.xml:

<configuration>

<property>

<name>

mapred.job.tracker

</name>

<value>

localhost:9001

</value>

</property>

</configuration>

Hadoop Releases

 1.0.X - current stable version, 1.0 release

 1.1.X - current beta version, 1.1 release

 2.X.X - current alpha version

 0.23.X - simmilar to 2.X.X but missing NN HA.

 0.22.X - does not include security

 0.20.203.X - old legacy stable version

 0.20.X - old legacy version

HDFS Access Methods
 Java API (For applications)

 Browser Interface (Next Slide)

Hadoop FS Shell

 Formatting filesystem with HDFS

 bin/hadoop namenode -format

 To add a directory

 bin/hadoop dfs –mkdir abc

 To list a directory

 bin/hadoop dfs -ls /

 To display content of a file

 bin/hadoop dfs -cat filename

Hadoop Browser Interfaces

MapReduce Job Tracker Web Interface

http://localhost:50030/

 Task Tracker Web Interface

http://localhost:50060/

HDFS Name Node Web Interface

http://localhost:50070/

Name Node Interface

References

http://hadoop.apache.org/

http://wiki.apache.org/hadoop/

http://hadoop.apache.org/core/docs/current/hdfs_des
ign.html

http://wiki.apache.org/hadoop/FAQ

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://wiki.apache.org/hadoop/FAQ

Questions?

 Write your queries to mkjoshi@expresskcs.com

