
A look at Partitioning

Vikas Sawhney
Long Island Oracle Users Group

March 30, 2006

What is Partitioning?
Partitioning is a method by which tables, indexes, and index-
organized tables can divided into multiple smaller chunks.
Partitioning is physical change; thus application code does
not be changed to accommodate this. Logically the object is still
one object; thus direct application code modification is not
required to implement partitioning .
That is not to say that the application code should be revised to
take benefit like accessing partition directly where possible.
A detailed analysis needs to be done prior to implementing
partitioning on a object as it could have some serious
performance impact. Make sure you test, test, and test again
before making changes to your production environment.
Test all process (insert,update,delete,select) involving the
interested table to be partitioned.

Who Partitions?
Deciding on what and how to partition is
both a Developer and DBA job.
A good of understanding needs to be known about how the
data is utilized within Oracle. How data is loaded and
queried.
A great of care needs to done in selection of the type of
partitioning along with the partition key.
Poor selection of partition or partition key could lead
to poor dml and ddl performance.
Always test, test, and test again prior to implementing in
production.

Why partition?
Partitioning has various benefits such as ease of management of
data, increase overall performance, better availability of the
system, and enhances security.

-–Makes management of data more controllable
-- Bring a section of data offline and the users don't miss a beat
-- A spew of tool to better organize partition attributes
(ADD, COALESCE, DROP EXCHANGE MERGE, MOVE, SPLIT TRUNCATE)

-- Failure are less likely to impact the entire object.
-- Allow better scalability of the data
-- Allows for a good method to archive old data out of the system

(Sliding window Technique)
-- Allows faster access to the data
-- Allows mechanism to better control hot spot in data acquisition
-- Allow more finer grained control of sensitive data

Partition Methods with Version Matrix
Partitioning Method Version

Partitioned View 7.3.2 – Present Version

Range 8.0.4-Present Version
row movement not
available

Hash 8.1.5 - Present Version

Composite (Range and
Hash)

8.1.5 - Present Version

List 9.0.1 - Present

Composite (Range and List) 9.0.1 - Present

Partitioned Views
1. Set PARTITION_VIEW_ENABLED=TRUE
2. Set OPTIMIZER_MODE=CHOOSE in the init.ora , rule based optimizer does
not work
3. Set COMPATIBLE=7.3.2 or higher
4. Make sure all the tables have correctly defined CHECK constraints.
5. Make sure all columns and all indexes of all tables in the partition view are
identically defined. Columns must be of the same size and type; indexes must
be on the same columns and be of the same type (regular, binary, bitmapped
or reverse).

6. ANALYZE all tables and indexes.

7. Make sure the query uses only a simple predicate, such as an equality or
BETWEEN against literals. The optimizer won't recognize partition views if
WHERE IN, OR or functions are used.

8. If the partitioning column is a CHAR type, this could be Bug 366589, fixed in
7.3.3. On most platforms, the fix is also inlcuded in patch release 7.3.2.2,
available from support. The workaround is to make the column a VARCHAR2
type and trim off any null padding in the data.

9. Oracle Corporation recommends that you use partitioned tables (available
since Oracle8) rather than partition views. In general, partition views should
not be used and are supported for compatibility only. Oracle Corporation
intends to desupport them in a future release. (Doc ID: Note:149016.1)

Range Partitioning
•Each partition has a VALUES LESS THAN clause,
which specifies a noninclusive upper bound for the
partitions. Any values of the partition key equal to or
higher are added to the next higher partition.

•Each partition is defined by a Partition Boundary. The
boundary basically limits the scope of the data
stored within a partition.

•A MAXVALUE literal can be defined as the catch all
partition where no particular partition has defined for
the dataset. MAXVALUE can represent an infinite value
for the partition key this includes null value.

•Most common use for Range partition is where you
know a set of boundaries for values

•If MAXVALUE is defined then no new partition can be
added.

•Maintenance Options available are:
Add, Drop, Exchange, Merge, Modify Attributes,
Modify Real Attributes (can allocate and deallocate
extents, mark local index partitions UNUSABLE, or rebuild
local indexes that have been marked UNUSABLE)

Hash Partitioning
•Data is arranged by column in the amount of partition
you specific.

•User no control over the distribution of data because
the data is distributed over the various partitions using
the system hash function

•The best case scenario for this is that you can spread
the data out on to different disks to better distribute
overall disk I/O

•The data can be equally balanced in terms of rows by
adding or deleting partitions from the object.

•The physical size of partition can be more finely
controlled.

•Row movement needs to enabled to allow data to be
moved from one partition to another.

•The concepts of splitting, dropping or merging
partitions do not apply to hash partitions. Instead,
hash partitions can be added and coalesced.

•A good choice of a hash partitioning key is a column
that has a great many unique values and is commonly
used as a predicate in queries.

List Partitioning
•A close cousin of range partitioning is list
partition. Here you can more clearly define
literal boundaries for partition.
Sort for like an in list in sql:
select table_columns from table_x
where column1 in ('a','b','c')

•The advantage of list partitioning is that you
can group and organize unordered and unrelated
sets of data in a natural way.

•Should have few distinct row values as each
value should be managed in the list

•DEFAULT partition key is created as the catch
all partition for data set that may not have not
defined.

•DEFAULT can be useful in catching value you
may not have originally thought of.

Partitioning Operations

Partitioning Operations

Partitioning Operations

	A look at Partitioning
	What is Partitioning?
	Who Partitions?
	Why partition?
	Partition Methods with Version Matrix
	Partitioned Views
	 Range Partitioning
	 Hash Partitioning
	 List Partitioning
	Partitioning Operations

