Materialized Views

Euphoria, Reality and Implementation

Table of Contents

- Euphoria
- Reality
- Implementation
- Tips and Techniques
- Possible Land Mines
- Bi-Products

Euphoria

Development

- 3rd party ETL tool
 - Data Modeler / Business Analyst & Developer (with additional skills)
- PL/SQL
 - Data Modeler / Business Analyst & Developer
- Materialized Views
 - Data Modeler / Business Analyst

(note: no DBA specified)

Euphoria (continued)

- Execution (test of an existing production aggregation process for three months of data / i.e. the daily process)
 - 3rd party ETL tool
 - ■Complete 3 months 60 minutes
 - PL/SQL
 - ■Complete 3 months 10 minutes
 - Materialized Views
 - ■Complete 3 months 10 minutes

Euphoria (continued)

- Execution (a fast refresh of a normal days' data volume)
 - Refresh of ODS ORDER Materialized View1 second. Yes, one second
 - Refresh of Data Mart A_ORDER aggregate materialized view
 - 3 seconds. Yes, three seconds (vs. one hour)
 - A bi-product was more accurate data (reaggregate of all changed order data)

Reality (Aggregate Materialized View)

- Out of the box
 - Materialized view log was investigated and created in ten minutes
 - Materialized view (aka: snapshot) was developed in ten minutes
 - Started testing refresh immediately
 - Started showing off, one minute later

Reality (Aggregate Materialized View)

Reality (ODS and Data Mart: Fact)

Reality

(with a FAST execution objective)

- Common error message:
 - ERROR at line nn: ORA-12015: cannot create a fast refresh materialized view from a complex query
- Can NOT use multiple joins to a table
- Can NOT use sub-queries
- Can NOT use mix outer and inner joins
- Can NOT use nested materialized views with connection strings to remote databases
- Can NOT create views on a table, and use both objects in your where clause

Implementation (possible changes of existing designs)

- De-normalize data to include reference data
- De-normalize data to include dimensional ID(s)
- Use of ODS IDs as dimensional table ID(s) for dimensional tables
- Creation of dimension table ID(s) in ODS (instead of in mart)
- Include ODS IDs as columns in a target FACT
 - ODS primary key becomes FACT primary key (e.g. ORDER_ID)
 - Reduces use of composite dimensional keys as FACT primary key
- Use of 'with new values' property of materialized views

Implementation (possible changes of existing designs)

- Use of PL/SQL replacing other vendor ETL tools
- Use of source system' primary keys or rowid(s) in target dimension or fact tables for fast execution objective
- Use of replication as part of "traditional" analysis, design, proto-cycling and application development
- Use of materialized view logs

Implementation (ODS)

Implementation (Data Mart: Fact)

Reality (Aggregate Materialized View)

Tips & Techniques

- PURGE_LOG Procedure
 - DBMS_MVIEW.PURGE_LOG("TABLE_MV_NA ME', NUMBER);
 - TABLE_MV_NAME = Name of the table or materialized view
 - NUMBER = Number of least recently refreshed materialized views whose rows you want to remove from materialized view log.
- Refresh of materialized views
 - DBMS_MVIEW.REFRESH ('MV_NAME', 'TYPE');
 - Refresh Type: f = fast, c = complete, n = never¹⁵

- When multiple joins are required for a fast execution
 - Create a source system key (possible composite key)
 / target system key cross-reference table(s). e.g
 when two or more period dimensions are required
 for a materialized view fact
- Conversion of data
 - Use of pre-built tables for large amounts of data
 - Use of existing tables from current production assets
- You can build multiple logs (possible for multiple dimensional materialized views) off of one table

- Why use pre-built tables for materialized views?
 - Existing tables to be used in materialized views
 - Conversion of large amounts of data
 - Adding partitions for additional data
 - Dropping partitions for older data no longer required or that has passed out of SLA agreements

Enable Query Rewrite

■ Set system parameter, you must set:

- QUERY_REWRITE_ENABLED initialization parameter to TRUE, before using query rewrite
- OPTIMIZER_MODE = all_rows, first_rows, or choose

 \blacksquare COMPATIBLE = 8.1.0 (or greater)

- Enable Query Rewrite (continued)
 - You must also specify ENABLE QUERY
 REWRITE clause in the materialized view definition, if it is a candidate for its use
 - Allows optimizer to redirect user queries to aggregate table vs. the table the query was directed to use

Possible Land Mines

- Large logs of unneeded data
- Coordination requirements during parallel development efforts using the same table
- Urge to use materialized views as an ETL process

Possible Land Mines (continued)

- Corrupted materialized views
 - While a materialized view refresh was in progress, we bounced the db with the source materialized view log
 - Errors
 - ORA-00955: name is already used by an existing object
 - ORA-12003: snapshot "owner". "snapshot name" does not exist
 - There are 2 entries in OBJ\$ without corresponding entries in the user_snapshots and dba_registered_snapshots objects
 - Metalink Doc ID: Note: 221775.1

Bi-Products

(from exposure to materialized views)

- New standard designs for:
 - work queue processing (materialized views)
 - maintaining dimensional tables (materialized views)
 - maintaining fact tables (possibly, materialized views)
 - data mart aggregates (materialized views)
 - application replication (materialized views)