

© 2012 DealerTrack, Inc. All rights reserved.

Using MongoDB Side-by-Side with RDBMS
at Dealertrack

2
Dealertrack Technologies SaaS overview

■ We offer a SaaS and data products for the retail automotive supply chain
■ Customers include:
■ - 18,500 Dealers (New & Used)
■ - 6,000 Lenders
■ - 38 Manufacturers
■ - 500 Part Mfgrs & Insurers
■ - 14 State Governments

■ Implemented with old & new tools:

■ - IIS / .NET / MSMQ / VB / C#
■ - Apache / Java / Python / Perl / Grails
■ - RPG2 / DDS / SQL
■ - Oracle / MS SQL Server / DB2 / MongoDB / MySQL / MUMPS

Core Solutions and Services Offered
3

■ Transaction-based solutions for dealers and partners
 Largest Online Credit Application Processing Network in the U.S. and Canada
 Largest Outsourced Provider of Contract Processing in the U.S. and Canada
 Contract and Vehicle Lien Processing for Lenders
 Vehicle Registration and Titling Services for Dealers
 Operate Private Web Solutions for Franchise Dealers (Honda, Mercedes, Nissan,

Hyundai/Kia (Canada))
■ Subscription-based solutions for dealers (Software-as-a-Service)

 #1 Web-based Dealer Management System (DMS)
 Industry Leading Sales And Finance Solutions
 Desktop And Mobile Inventory Solutions
 Largest Provider of Marketing and Interactive Solutions Including Web, Mobile,

Search, Social And Chat
 Unique Digital Retailing Solutions That No Other Industry Competitor Can

Provide

4
DealerTrack 2.0 Conceptual Architecture

Architecture Goals and Challenges

• Enable rapid growth in products and services
• Doing away with point-to-point integration
• “spaghetti code”
• Managing merger and acquisition driven
• growth
• Enabling applications or content for multiple
• front-ends, including mobile devices
• Getting better operational visibility, management, and control of the

integration / SOA infrastructure
• Legacy system modernization

5
Dealertrack Platform Topology

6
Technology

■ Platform: RedHat Linux
■ Front-End: Python/Django/Apache WSGI
■ Services layer – Python/Django/TastyPie
■ Enterprise Service Bus – Mule ESB
■ Messaging Broker – RedHat MRG
■ Databases – Oracle, MongoDB, DB2, MySQL
■ Local Cache - Redis

7
Case #1 – Using Mongo as HTTP Session backend

■ Python
■ Django
■ Mongo DB

8
Why ?

■ The application presents related but separate vertical functionality under
one umbrella

■ The shared features require their own schemas in the HTTP session but
they all share same HTTP session

■ Data needed in the HTTP session can vary by the specific functionality of
the shared feature

■ Performance is critical. We don't want to hold UI thread any more then we
absolutely have to

9

This is what this web application UI looks like

10
Introducing MongoDB as session storage

11
It is a question of responsibilities

■ Need to know basis
■ Front-End does NOT need to know where the session data is stored

12
What do we like about this?

■ Allows for the the shared features to use their own schemas in the HTTP
session while sharing the HTTP session

■ Allows the data to vary by the specific functionality of the shared feature

■ Front End is completely oblivious of where the data actually stored

■ Using MongoDB – obviously cool

13
Is this the optimal solution?

■ The session data is stored in a central datastore
■ There is some local area network overhead writing into remote centralized MongoDB

■ What do you think? Any ideas, suggestions? Lets share some thoughts

14
It beats our old solution, but can we make it even better?

■ We like a lot of this approach
■ We have one concern – remote centralized database calls for every

session request
■ Why don't we optimize?

□ MongoDB is 4x faster than Oracle w/ 10% the capacity cost
□ It is still slower than reading and writing from local memory
□ It is still important for the front end not to know anything about it

■ What can we do?
■ Introduce local cache – we are using redis

15
Enter local cache

■ If the data is not present in the local cache – read it from Mongo and
then cache it locally

■ If the data is not in Mongo – create new session and return

16
Redis local cache + MongoDB centralized session store

■ Sessions are sticky to the web servers
■ Session and reference data stored in local cache and mostly accessed from

there
■ Data also stored in Mongo as a master cache backend

■ redis = Local Session Cache
■ MongoDB – Centralized Session Persistence

■ Custom Django session backend makes it all transparent to the front end
web application

■ Custom redis session backend connects local redis with centralized Mongo

17
Case #2 – Using Mongo DB to cache relational data in
Inventory+

■ Inventory+ – another Dealertrack Technologies Solution for auto dealers

Major Features
■ Vehicle Inventory Management – Marketing, Pricing, Aging, etc…
■ Pricing Analytics – Price your inventory based on real market data
■ Dealership Websites – Based on vehicle inventory and updated in real time
■ Chat – Host and manage chat services for dealership websites
■ Many more features for our dealer users

18
Case #2 – Using Mongo DB to cache vehicle data in
Inventory+

■ eCarList is using Mongo DB in to cache large amounts of relational data and make it
searchable

19
UI View

Vehicle Attributes cached
and read from MongoDB

• VIN
• Year, Make, Model, etc…
• Vehicle Photo URLs
• Attributes

• Odometer
• Color
• Transmission
• Engine
• Etc…

• Optional Equipment
• Standard Equipment
• Pricing Info & Price History

20

General Use Case

Advantages of Mongo over MySQL or DB2 in Inventory+

■ The objects that eCarList manages are built around Perl’s
strengths: arrays and hashes

■ Relational databases do not afford a one-for-one mapping of these
data structures, so storing and retrieving them is a challenge

■ Mongo natively handles these structures, and therefore presents a
cleaner interface for storing and retrieving Perl objects

■ If a Perl query is conforming to Mongo’s indexing, lookups are
nearly O(1)

■ MongoDB is preloaded with search results, further extending the
O(1) lookup time

21

Vehicle MySQL Schema

This table is
linked to twenty-
two additional
tables.

Caching
assembled
objects in
MongoDB pays
off

22
Mongo Overview in Inventory+

■ MongoDB used to cache Vehicle related data from associated tables
■ Single lookup by EID, or DEALER_EID allows for simple ways to get at Vehicle documents
■ Previous methods to access data required multiple table lookups, or complex JOIN SQL

mongos> db.vehicle.find({'vehicle_eid':'59VpEPG8F2I6vUO4Uh1HCw'}).pretty()
{
 "vin" : "SCFFDCCD2BGE12420",
 "year" : 2011,
 "make_eid" : "Cc0Jlpb5gi5lc1RFgbh+iw",
 "make" : "Aston Martin”,
 "model" : "DBS Volante",
 "selling_price" : 192888,
 "engine_name" : "5.9L DOHC 48-Valve V12 Engine",
 "vehicle_attributes" : {
 "transmission" : "Automatic",
 "drivetrain" : "Rear Wheel Drive",
 "body_type" : "Convertible"
 …
 "main_photo" : {
 "photos" : {
 "640" : "http://photos.ecarlist.com/jS/Qn/Rl/4k/8y/Nw/9w/WE/xP/2c/pA_640.jpg",
 "original" : "http://photos.ecarlist.com/jS/Qn/Rl/4k/8y/Nw/9w/WE/xP/2c/pA.jpg",
 ...

23

Relational Databases MongoDB

■ Hundreds of columns per row
■ Referential integrity preserves data

quality from central definitions
■ SQL Native Format conversion to Perl

associative array
■ No easy way to cluster servers
■ Inner join operations are I/O blocking,

slowing down retrievals and forcing
sequential access of large objects

■ Update efficiency for normalized data
models

■ Nested JSON arrays of arrays
■ JSON values returned by Mongo in

‘native’ Perl format
■ Server clustering built in
■ No inner joins required, retrievals are

‘atomic’ and very fast

Comparison of Features

24
General Use Case

■ Given a unique identifier, retrieve all information associated with a Vehicle
in nested form

■ MySQL cannot do this in a single step, even with a large number of
embedded inner join operations.

■ We have now moved the relational tables to a high-performance DB2
cluster

■ Whenever any of the attributes of a vehicle are updated (either in batch or
by an interactive user) MongoDB is updated as the DB2 transaction
commits

■ MongoDB returns (via JSON) a complete Perl object, including internal
classes with instance values for any requested Vehicle ID

25
Batch Data Feed Management

■ Our customers and partners send us thousands of files (large and small)
multiple times per day with a variety vehicle inventory information for
analytical processing and for preparation for web listing (on dealer websites
and portals)

■ We have a complex workflow to process the contents of these files and
update the information in our databases, recalculate analytics, reformat
information, and update our managed websites as well as send the data out
to other systems

■ Decomposition of incoming jobs into file-by-file parallel executions requires
complex scheduling and tracking of the state of processing to control
scheduling of parallel execution

■ MongoDB provides the speed of a queuing system and the multi-index
inquiry flexibility of a DBMS (this is a one-table/one-collection data model)
for managing the flows.

26
Three MongoDB use/cases at Dealertrack:

Distributed back-end for an optimistic local cache

High-speed key:value datastore for complex objects

Batch data feed management

Next Up: Backing store for AMQP/QPID/MRG

Discussion and Questions

27

We are growing and hiring!

www.dealertrack.com/portal/careers-home

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

