Automatic Data Optimization

Saving Space and Improving Performance!

Erik Benner, Enterprise Architect

Who am I?

Erik Benner
@erik_benner
TalesFromTheDatacenter.com

Enterprise Architect
Ebenner@mythics.com

- Published Author
- IOUG Solaris SIG Leader
- RAC Attack Ninja
- First Version of Oracle...7
- Linux since 1992
- Solaris since 1996
- OEM 12c since 2011
- Oracle Database Appliance since 2011
- DB 12c in prelaunch 2013

Growth in Data Diversity and Usage

1,800 Exabytes of Data in 2011, 20x Growth by 2020

Today's Drivers

Enterprise

45% per year growth in database data

Cloud

80% of new applications and their data

Regulation

300 exabytes in archives by 2015

Emerging Growth Factors

Mobile

#1 Internet access device in 2013

Big Data

Large customers top 50PB

Social Business

\$30B/year in commerce by 2015

I know how to divide. What I want to learn is how to divide and conquer. That could come in handy one day."

The Concept of Partitioning

Simple Yet Powerful

ORDERS

Large Table

Difficult to Manage

ORDERS

Partition

Divide and Conquer

Easier to Manage

Improve Performance

ORDERS

Composite Partition

Better Performance

More flexibility to match business needs

Transparent to applications

What Can Be Partitioned?

- Tables
 - Heap tables
 - Index-organized tables
- Indexes
 - Global Indexes
 - Local Indexes
- Materialized Views

Local Partitioned Index

Partition for Tiered Storage

95% Less Active

Low End Storage Tier 2-3x less per terabyte

5% Active

High End Storage Tier

Compression Techniques

COMPRESSION TYPE:	SUITABLE FOR:
Basic Compression	"Mostly read" tables and partitions in Data Warehouse environments or "inactive" data partitions in OLTP environments
Advanced Row Compression	Active tables and partitions in OLTP and Data Warehouse environments
Advanced LOB Compression and Deduplication	Non-relational data in OLTP and Data Warehouse environments
Advanced Network Compression and Data Guard Redo Transport Compression	All environments
RMAN/Data Pump Backup Compression	All environments
Index Key Compression	Indexes on tables for OLTP and Data Warehouse
Hybrid Columnar Compression – Warehouse Level	"Mostly read" tables and partitions in Data Warehouse environments
Hybrid Columnar Compression – Archive Level	"Inactive" data partitions in OLTP and Data Warehousing environments

Advanced Row Compression

Partition/table/tablespace data compression

- Support for conventional DML Operations (INSERT, UPDATE)
- Customers indicate that 2x to 4x compression ratio's typical

Significantly eliminates/reduces write overhead of DML's

- Batched compression minimizes impact on transaction performance

"Database-Aware" compression

- Does not require data to be uncompressed keeps data compressed in memory
- Reads often see improved performance due to fewer I/Os and enhanced memory efficiency

Hybrid Columnar Compression

Compression Unit

Hybrid Columnar Compressed Tables

- Compressed tables can be modified using conventional DML operations
- Useful for data that is bulk loaded and queried

How it Works

- Tables are organized into Compression Units (CUs)
 - CUs are multiple database blocks
- Within Compression Unit, data is organized by column instead of by row
 - Column organization brings similar values close together, enhancing compression

Data Compression

 Reduce storage footprint, read compressed data faster

Compression Benefits

- Transparent: 100% Application Transparent
- Smaller: Reduces Footprint
 - CapEx: Reduces server & storage costs for primary, standby, backup, test & dev databases ...
 - OpEx: Reduces heating, cooling, floor space costs ...
 - Additional ongoing savings over life of a database as database grows in size
- Faster: Transactional, Analytics, DW
 - Greater speedup from in-memory: 3-10x more data fits in buffer cache & flash cache
 - Faster queries
 - Faster backup & restore speeds
- End-to-end Cost / Performance Benefits across CPU, DRAM, Flash, Disk &
 Network

Automatic Data Optimization (ADO)

- ADO offers capability to move and/or compress data based on observed usage patterns
- Uses heat maps to determine how often data has been access
- Tracks exactly how data has been utilized (DML vs. query, single-block vs. table scan)
- Data usage patterns can be tracked at tablespace, segment, and row level

Automatic Data Optimization

Simple Declarative SQL extension

Active	 Advanced Row Compression (2-4x) Affects ONLY candidate rows Cached in DRAM & FLASH 	row store compress advanced row after 2 days of no update
■ Warehouse Compression(10x) ■ High Performance Storage	column store compress for query low after 1 week of no update	
Access Occasional	Warehouse Compression(10x)High Capacity Storage	tier to lower cost tablespace
Access Archive Compress Archival Storage Dormant	Archive Compression(15-40X)Archival Storage	column store compress for archive high after 6 months of no access

Heat Maps: "How Hot Is It?"

ADO leverages heat maps to:

• Capture data usage frequencies

 Determine which compression level is most appropriate for how data is being used

 Determine which data could be moved from a highperformance storage tier to a lower-performance tier

 Decide when data should be moved between different tablespaces or partitions to limit possible out-of-space conditions

Heat Maps: An Example

* Requires Exadata Storage Servers, ZFS Appliance, or Pillar Axiom storage

DBMS_COMPRESSION

Compliments of Oracle

The DBMS_COMPRESSION package gathers compression-related information within a database environment. This includes tools for estimating compressibility of a table for both partitioned and non-partitioned tables, and gathering row-level compression information on previously compressed tables. This gives the user with adequate information to make compression-related decision.

Built into 12c, can be downloaded for 11gR2

The Official docs

http://docs.oracle.com/database/121/ARPLS/d compress.htm#ARPLS236

ADO.SQL

set serveroutput on

```
DECLARE
blkcnt_cmp PLS_INTEGER;
blkcnt_uncmp PLS_INTEGER;
row_comp PLS_INTEGER;
row_uncmp PLS_INTEGER;
cmp_ratio NUMBER;
comptype VARCHAR2(30);
BEGIN
```

```
COMP_NOCOMPRESS

1 No compression

COMP_FOR_OLTP

2 OLTP compression

COMP_FOR_QUERY_HIGH

4 High compression level for query operations

COMP_FOR_QUERY_LOW

8 Low compression level for query operations

COMP_FOR_ARCHIVE_HIGH

16 High compression level for archive operations

COMP_FOR_ARCHIVE_LOW

32 Low compression level for archive operations
```

```
BEGIN

dbms_compression.get_compression_ratio('ADO', 'ADO', 'ADO_DEMO', NULL, 32, blk

cnt_cmp, blkcnt_uncmp, row_comp, row_uncmp, cmp_ratio, comptype);

dbms_output.put_line('Block Count Compressed: ' || TO_CHAR(blkcnt_cmp));

dbms_output.put_line('Block Count UnCompressed: ' ||

TO_CHAR(blkcnt_uncmp));

dbms_output.put_line('Compression Type: ' || comptype);

END;

/
```


Execution

SQL> @ado

Compression Advisor self-check validation successful. select count(*)

on both

Uncompressed and EHCC Compressed format = 1000001 rows

Block Count Compressed: 8941

Block Count UnCompressed: 37986

Compression Type: "Compress Archive Low"

PL/SQL procedure successfully completed.

