
How to Find the Optimal
Configuration for Your Virtualized

Environment

Iordan K. Iotzov
Lead Databases

News America Marketing
iiotzov@newsamerica.com

Blog: http://iiotzov.wordpress.com/

mailto:iiotzov@newsamerica.com

About me

• 15+ years of database administration and
development experience

• MS in Computer Science, BS in Electrical Engineering

• Presented at RMOUG,Hotsos, NYOUG and Virta-Thon

• Active blogger and OTN participant

• Currently Lead Databases at News America
Marketing

Agenda

• Overview of virtual server consolidation

• Modeling the problem

– Summary and Definitions

– Constraints

– Implementation

• Solving the model

– Discrete optimization

• Conclusion

Overview
Competing Goals

Minimize the computational footprint of your
enterprise through virtualization

pay less for hardware and licenses

While making sure performance and business
requirements are met

ensure that end user experiences and business
processes do not suffer due to the consolidation

Overview
Target Audience

Medium to large size enterprises
 For small systems, the efforts to get a great virtual to

physical mapping probably do not justify the benefits

 Reasonable load volatility
 The mapping decisions are based on past performance, so

the future load should not significantly deviate from the
past. Do not attempt for systems that can go “viral”.

 Ability to measure, store and process various
performance metrics
Performance data should be made available in a single

repository, ideally in a relational database

Overview
Optimization

Brief Introduction to Optimization:

Minimize 𝑓 𝑥

Subject to constraints 𝑥 ∈ 𝑆

Where 𝑓:𝐷 → 𝑅 , 𝐷 is the domain of 𝑓
and 𝑆 ∈ 𝐷 is the set of feasible solution x

Constraints 𝑆 can by represented as

𝐶𝑖 𝑥 = 0
𝐶𝑗 𝑥 ≥ 0

Overview
Continuous Optimization

Continuous optimization:

variable x has real values

Example:

Minimize:

 𝑓 𝑥 = 𝑥3 − 2𝑥2 − 31𝑥 + 28

Subject to :

 𝑥 > 0

 40𝑥 + 𝑓(𝑥) > 0

Optimum

x

f(x)

Overview
Discrete Optimization

Discrete optimization: variables xi are discrete

Example: Knapsack problem

There are n items, each with value 𝑣𝑖 and weight 𝑤𝑖. The goal is
to maximize the sum of the values of the items in a bag with
capacity W

Maximize: 𝑣𝑖𝑥𝑖
𝑛
𝑖=1

Subject to : 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 <W

http://commons.wikimedia.org/wiki/File:Knapsack.svg

Modeling the Problem
Summary and Definitions

Mapping of virtual to physical servers
as an optimization problem

Minimize:
Total Cost of Ownership (TCO)
Need to account for sunk costs
It is OK to simplify

Subject to:
Technology and Business Requirements
Minimal CPU oversubscription during certain hours (based on historic
patterns)
Guaranteed level of performance even when a virtual server goes “berserk”
Certain virtual servers have to run on CPUs with at least x GHz
and many more…

Modeling the Problem
Summary and Definitions

• Physical servers

– pi , where i in [1,n]

• each server has pcpu
 i number of CPUs, each with pcpu

speed
 i speed in GHz

• each server has pmem
 i memory (GB)

• each server has pio_thru
 i IO throughput(GB/sec)

pcpu

 i

pmem
 i pio_thru

 i

Modeling the Problem
Summary and Definitions

• Virtual servers
– vi , where i in [1,m]

• each server has been allocated vcpu
 i number of CPUs

• each server has been allocated vmem
 i memory (GB)

• each server has used no more than vio_thru
 i IO

throughput(GB/sec)

vcpu
 i

vmem
 i

vio_thru
 i

Modeling the Problem
Summary and Definitions

4 CPUs
8G RAM
8GB HBA

2 CPUs
16G RAM
8GB HBA

Number of CPUs
Amount of RAM
HBA throughput

Graphical Representation:

Modeling the Problem
Summary and Definitions

Virtual Servers: Virtual Servers: Physical Servers:

Mapping of virtual servers to physical ones

Modeling the Problem
Summary and Definitions

Possible mapping shortfalls : Too spread out

Low chance of performance issues due to interference from other VMs,
but possibly using more hardware/licenses than needed

Modeling the Problem
Summary and Definitions

Minimal hardware/licenses costs, but with significant chance of performance
issues due to interference from other VMs

Possible mapping shortfalls : Too tight

Modeling the Problem
Summary and Definitions

Less Hardware/ Licensing!

Just right!
Minimal hardware/licenses costs, with low chance of performance
issues due to interference from other VMs

Modeling the Problem
Summary and Definitions

 𝑥𝑗 p
cpu

 𝑗

𝑛

𝑗=1

𝑥𝑗 = 0 iff 𝑥𝑖,𝑗 = 0 for all I (physical server pi not used)

𝑥𝑗 = 1 iff 𝑥𝑖,𝑗 = 1 for al least one I (physical server pi used)

Subject to :
 For each virtual server is in one and only one physical server
For each virtual server j,
 𝑥𝑖,𝑗
𝑛
𝑖=1 = 1

Find a mapping between virtual and physical servers 𝑥𝑖,𝑗

𝑥𝑖,𝑗 = 1 if virtual server i will reside on physical server j , 0 otherwise

Minimize the number of CPUs (Since license cost are typically
tied to the number of CPUs):

Note: The function to minimize can be modified if using Oracle approved
hard partitioning

Modeling the Problem
Constraints

For each physical server i ,
 𝑥𝑖,𝑗 ∗ vcpu

 i
𝑚
𝑖=1 ≤ = pcpu

 i

No CPU overallocation:

No memory ove rallocation:
For each physical server I ,
 𝑥𝑖,𝑗 ∗ vmem

 i
𝑚
𝑖=1 ≤ = pmem

 i

No IO throughput overallocation:
For each physical server I ,
 𝑥𝑖,𝑗 ∗ vio_thu

 i
𝑚
𝑖=1 ≤ = pio_thru

 i

Constraints allow us to specify performance and business requirements
that the system must adhere to.

A common requirement is to allow no overallocation of computing resources

Modeling the Problem
Implementation

• Custom Solutions (PL/SQL package)

– ability to incorporate virtually any information

– ability to customize to any specific
environment/licensing need

• Off the Shelf Solutions (Oracle OEM/
Consolidation Planner)

– minimal setup

– easy to use

Modeling the Problem
Implementation/Custom

A repository, ideally in a database, is a great place to host the optimization logic.

OEM Repository Database

MGMT$METRIC_HOURLY

MGMT$TARGET

MGMT_ECM_HW

….

OEM Repository Managed Tables

Custom Tables

CUST_TAB

Custom PL/SQL

….

Modeling the Problem
Implementation/ Consolidation Planner

Off the shelf solutions: Oracle Enterprise Manager Consolidation Planner
Setup->Extendibility->Plugins

Modeling the Problem
Implementation/ Consolidation Planner

 Consolidation Project
o defines the scope of the consolidation effort

 Consolidation Scenario
o specific requirements and constraints

Modeling the Problem
Implementation/Custom

Allocating enough resources, such as virtual CPU (vcpu
 i
), to be able to

sustain maximum load (as per history) would minimize the likelihood of a
performance problems related to resource utilization.

SELECT MAX(ceil(m))

FROM

(select

 max((a.maximum*c.cpu_count)/100) m

 , a.rollup_timestamp

 from

 mgmt$metric_hourly a ,

 mgmt$target b ,

 sysman.MGMT_ECM_HW c

 where a.metric_name = 'Load'

 and a.column_label = 'CPU Utilization (%)'

 and a.target_guid = b.target_guid

 and b.target_name = <hostname>

 and c.hostname = <hostname>

 and c.vendor_name = 'Intel Based Hardware'

 group by a.rollup_timestamp)

OEM Repository query for getting the max number of CPUs used:

Modeling the Problem
Constraints

Sizing for max load can be quite conservative i.e. we are likely to get excellent
performance, but we are going to allocate substantial resources.

We can switch the balance a little bit – we can slightly increase the chance of
performance issues, but reduce the computational footprint.

We can archive that by taking into account the timing of the load. We can come with
a configuration that would not have resulted in an overalloaction during any time of
the past. Overallocation in future is possible if the timing of the workloads changes.

Sizing for max load per day
Lower risk of contention
Larger footprint

Sizing for average load per hour
Higher risk of contention
Smaller footprint

Modeling the Problem
Implementation/ Consolidation Planner

Consolidation planner comes with pre-configured scenarios for three
different points on the contention/footprint scale

Modeling the Problem
Constraints

time

Server 1 load

Server 2 load

CPU

Combined
Server 1 and
Server 2 load

vcpu
1

vcpu
2

vcpu
1+2

vcpu
1+2 vcpu

2 vcpu
1 < +

Sizing for max. load : vcpu
2 vcpu

1 +

Sizing for max. combined load :

vcpu
2 vcpu

1 +

Modeling the Problem
Implementation/Custom

SELECT COUNT(*)

FROM

 (SELECT SUM((a.average*c.cpu_count)/100) m

 FROM mgmt$metric_hourly a ,

 mgmt$target b ,

 sysman.MGMT_ECM_HW c

 WHERE a.metric_name = ''Load''

 AND a.column_label = ''CPU Utilization (%)''

 AND a.target_guid = b.target_guid

 AND b.target_name IN ('||<list of virt servers>|| ')

 AND c.hostname

 ||''.''

 ||c.domain = b.target_name

 AND c.vendor_name = ''Intel Based Hardware''

 GROUP BY a.rollup_timestamp

 HAVING SUM((a.average*c.cpu_count)/100) > 0.9*'||<CPUs of physical server>

)

The following query checks if a list of virtual servers would fit in a physical server

Modeling the Problem
Implementation/Consolidation Planner

OEM Consolidation Planner can consider either max, 80% or average load.

Modeling the Problem
Constraints

Major drawback of over-allocation – if one of the VMs consumes unplanned
amount of resources , the other VMs would suffer.

Some virtualization providers allow us to guarantee each of the VM certain level of
resources (CPU/memory) in case of over allocation.

VM3
guaranteed

CPU

VM2
guaranteed

CPU

VM1 guaranteed
CPU

Physical CPU

Physical CPU > VM1 guaranteed CPU + VM2 guaranteed CPU + VM3 guaranteed CPU

Modeling the Problem
Constraints

time

CPU

A reasonable compromise is to guarantee that under distress each VM will
get resources that would be enough to accommodate the load in 95% of the time

vcpu
g

vcpu
g - CPU a VM is guaranteed to receive regardless of activities in

other VMs

Modeling the Problem
Implementation/Custom

SELECT MAX(ceil(m))

FROM

 (SELECT MIN(m) m

 FROM

 (SELECT m ,

 percent_rank () over (ORDER BY m) perc

 FROM

 (SELECT MAX((a.maximum*c.cpu_count)/100) m ,

 a.rollup_timestamp

 FROM mgmt$metric_hourly a ,

 mgmt$target b ,

 sysman.MGMT_ECM_HW c

 WHERE a.metric_name = 'Load'

 AND a.column_label = 'CPU Utilization (%)'

 AND a.target_guid = b.target_guid

 AND b.target_name = i.hostname

 ||'.<domain_name>.com'

 AND c.hostname = i.hostname

 AND c.vendor_name = 'Intel Based Hardware'

 GROUP BY a.rollup_timestamp

)

)

 WHERE perc > 0.95
)

Find CPU level that is enough for the system 95% of the time

Modeling the Problem
Constraints

Reducing computational footprint by recognizing that some servers
are needed only during certain hours.
Most business requirement checks should be done for every hour of
the day, taking into account which servers are active then.

12
am

 2
am

Offshore Dev

 Tool Repository

Onshore UAT

TroubleShooting

 4
am

 6
am

 8
am

 10
am

 12
pm

 2
pm

 4
pm

 6
pm

 8
pm

 10
pm

Modeling the Problem
Constraints

No two nodes of a RAC cluster should be on the same physical server

DB1

DB2

DB3

DB1

DB2

DB3

DB1 DB2 DB2 DB3

RAC cluster:

Modeling the Problem
Implementation/ Consolidation Planner

Specifying the RAC nodes constraint in the Consolidation Planner

Modeling the Problem
Constraints

Guarantee that a virtual machine runs on a physical server
that has sufficient CPU speed

1995 MHz

2933 MHz

3066 MHz

Requires at least
2500 MHz

Solving the Model
Discrete Optimization

Computational Complexity of Optimization Problems

 P – can be solved in polynomial time

 NP – the solution can be verified in polynomial time

 NP hard – at least as difficult as any problem in NP

 NP complete – NP hard and in NP

Solving the Model
Discrete Optimization

http://en.wikipedia.org/wiki/NP-hard#mediaviewer/File:P_np_np-complete_np-hard.svg

From:

Computational Complexity of Optimization Problems

Solving the Model
Discrete Optimization

Finding the optimal solution for many real world problems may
require enormous, frequently impractical, amount of
computing resources.

We usually need to settle for good, but not necessary optimal
solutions. Here are some major techniques in Discrete
Optimization:

 Constraint Programming
 Local Search
 Linear and Integer Programming

Solving the Model
Discrete Optimization

The problem we are trying to solve here can be considered a variation
of the offline variable size Bin Packing Problem (BPP).

Given:
N items, each with weight 𝑤𝑗

M bin, each with capacity 𝑐𝑖

Minimize: 𝑐𝑖,
 for all bins which have at least one item

Subject to:
Each item must be in exactly one bin
 𝑤𝑗 < 𝑐𝑖 , for all items that are in bin i

Solving the Model
Discrete Optimization

Heuristics for solving classic BPPs

 Next-Fit: Put in as many items as possible in a bin,
then move to the next one.

 First Fit: Put an item in the first bin that fits it. Start using a new bin only after
trying all partially filled bins

 Best-Fit: Assign items in a way that minimizes the residual capacity of a bin

 Next-Fit Decreasing: Same as Next-Fit, but have the items ordered in
decreasing order

Solving the Model
Discrete Optimization

Randomization – a simple way to minimize the risk of a bad solution. It has
intuitive local search interpretation.

 Starting from (somehow) random starting position

 Random hill-climbing moves

 Simulated Annealing – randomly allowing moves that do not improve the

solution

Local minimums The global minimum

Conclusion

• Getting optimal virtual server consolidation is
more of a science than an art

• Doing optimal virtual server consolidation
right requires time and efforts, but it can have
significant ROI

• There is no need to look for absolute
optimality - getting a great, though not
optimal solution, can make a huge difference.

Thank you

