
1 of 43

Printing Without Printers:
A Database-Centric Approach

to
Document Exchange and Reporting

Michael Rosenblum & Dr. Paul Dorsey
Dulcian, Inc.

www.dulcian.com

NYOUG Summer General Meeting
June 14, 2016

2 of 43

Who Am I? – “Misha”
Oracle ACE
Co-author of 3 books
 PL/SQL for Dummies
 Expert PL/SQL Practices
Oracle PL/SQL Performance Tuning Tips &

Techniques (Rosenblum & Dorsey, Oracle Press,
July 2014)

Known for:
 SQL and PL/SQL tuning
 Complex functionality

 Code generators
 Repository-based development

3 of 43

Documents???

Why bother?
 Standards

 For example - government, medical
High importance

 Legally binding
 Physical limitations

 Sorry, no scrollable parchments anymore

4 of 43

Documents…

What are they?
 Formal representation of available data

 Non-interactive
 Self-contained

What about them?
Data representation on the screen is NOT the same

as on paper
 … always present is the notion of “translation”

something will be “lost in translation”

5 of 43

Documents!!!

Documents

Pre-defined
format

Data

6 of 43

Documents ?!?!

Being done
forever!!!

Topic,
please!!! Boring!

Ancient
history…

So what?

7 of 43

Well…

“…as we know, there are known knowns; there are
things we know we know. We also know there are
known unknowns; that is to say we know there are
some things we do not know. But there are also
unknown unknowns – the ones we don't know we
don't know.”

© D. Rumsfeld

8 of 43

Known Knowns

Data
 Every database can store text.

 ... And some of them are even explicitly made to be
document-based

All scalar datatypes can be converted to text.
… to be fair, with some potential data loss

Formats
DOC, DOCX, PDF, XLSX… (you name it!)

9 of 43

Known Unknowns

Where to merge data and formatting
 Schools of thought:

 Front-end
 Middle-tier
 Back-end

Different implementations:
 Open-source vs. commercial solutions

Costs
How to merge
Acceptable data loss when formatting
 Performance considerations

10 of 43

Unknown Unknowns

How can you predict and support future
requirements?
… because changes can just “happen”

Where do you draw the line between regular
reporting and ad-hoc querying?
…because both of these areas quickly blur in actual

production environments.

11 of 43

So?

You need to solve known unknowns.
 Choosing the wrong environment can be very

costly!
You need to build systems that are:
 Flexible enough
 Customizable enough

12 of 43

Technology Decisions

13 of 43

Client-Side (1)

Pros:
 Shifts workload to the client
Minimizes network traffic

Cons:
Deployment nightmare!
Unpredictable performance

Current state:
 Rarely used (only in tightly controlled environments)

14 of 43

Client-Side (2)

Real world example:
 What: Client-based document viewer (now called IBM

Lotus Forms)
 Client software requires installation on every working laptop.
 All forms must be local (and current!) on every laptop.

 How:
 Viewer accepts master form plus XML-formatted data.
 Viewer allows edits which are shipped back to server as XML.

 When: Early 2000 / 2014
Lessons learned:

 Real deployment nightmare, but offloading merging to
clients less server resources needed

15 of 43

Middle Tier (1)

Pro:
 Convenient - if accessing multiple data sources

Cons:
 Frequently inefficient mechanisms for accessing

data sources
 Multiple roundtrips to database
 High memory utilization

Often overkill (adds complexity)
Current state:
 The most commonly used solution

16 of 43

Middle Tier (2)
Real world example:

 What: Same client-based document viewer (now called
IBM Lotus Forms), but together with Lotus Forms Server
 Client software requires installation on every working laptop.
 Server does the merging and returns the document.

 How:
 Viewer just shows final document (real-only).
 Editing is done using a web-based application.

 When: 2014 / 2017 (being gradually retired)
Lessons learned:

 Large documents (20+ pages, 600+ fields) are expensive
to merge (both memory- and CPU-wise) resource
tuning is very important.

17 of 43

Server-Side (1)

Pros:
 Formatting is brought to data - not vice versa

 No extra round-trips
 Complete access to available data

Cons:
 Counter-intuitive
 Increased server workload

Current state:
Deployed and working in production

18 of 43

Server-side (2)
Real world example:

 What: Database generates PDFs directly.
 Many browsers already understand PDFs directly (no need for

Adobe products)
 How:

 Database stores fillable PDF forms, merges data (Java-based
merger) and ships the final document out.

 Viewer just shows final document (real-only).
 Editing is done using a web-based application.

 When: 2015+ (replacing previous implementation)
Lessons learned:

 Database workload increase appears to be less than
expected.

 Fillable PDFs use JavaScript internally even for basic
calculations (security no-go!) more work that expected

19 of 43

Why use the database?

Fewer roundtrips mean less workload
… no resource waste to manage connections,

environments, etc.
Less software to configure
… because each piece of software has its own

setting issues (+corresponding learning curve)
Single integration mechanism (PL/SQL)
… plus various PL/SQL access mechanisms

20 of 43

Architectural Challenges

21 of 43

Getting Agile

Goal:
Use flexible reporting

 Parameters should be customizable enough end users
feel their power

 Documents should be well-formatted end users get
what they need

Avoid “ad-hoc” trap
 Adequate performance
 Predictable (and manageable number of query

permutations)

22 of 43

Repository-Based
Development

Solution:
Developers/Architects register available data sources

plus all extras:
 Columns/aggregates
 Filters (run-time and design-time)
 Output formats

 End users can define customized reports (or use pre-
existing ones):
 Inputs are stored.
 Execution is timed.
 Errors are stored.
 Results are stored (if needed).

23 of 43

Data model (Main)

24 of 43

Data model (Access)

25 of 43

Maintenance UI Example

26 of 43

Running UI Example

27 of 43

Important Lessons

Avoid over-generalizations:
… because your own developers should be able to

understand the repository.
Don’t be afraid of project-specific data elements
… because it makes your code much more

maintainable.
Never ever reuse attributes from a generic

model for alternative purposes
… because at some point you may have to migrate

to a different solution.

28 of 43

Existing Solutions
and Case Studies

29 of 43

Tools Overview

JSON generation
 PL/SQL-based [PL/JSON]

 Free

PDF generation
 PL/SQL-based [PL/PDF]

 Commercial
 Java-based [ITEXT]

 “Sort of” free (AGPL)

XSLX/XML generation
 PL/SQL-based

 Our own (meaning free)

30 of 43

PL/JSON (1)
Used for:

 Very granular manipulation of JSON data
 100% PL/SQL-based
 Various extra APIs for printing/converting to XML/table

access etc.
 Info:

 Developed by Jonas Krogsboell and Lewis R.
Cunningham

 Github: https://github.com/pljson/pljson
 Current version: 1.0.5
 Works even in Oracle 12c, but some people prefer

customization of names to avoid clashing with Oracle’s
own JSON datatype

31 of 43

PL/JSON (2)
Code sample
declare

obj pljson.json:=pljson.json();

begin

obj.put('A', 'a little string');

obj.put('B', 123456789);

obj.put('C', true);

obj.put('D', false);

obj.put('F', json_value.makenull);

obj.remove('C');

obj.put('Nested JSON',

pljson.json('{"lazy construct": true}'));

obj.put('An array', pljson.json_list('[1,2,3,4,5]'));

obj.print;

end;

32 of 43

PL/JSON (3)
Our story:
 Currently in production to manipulate reasonably

large (up to 1 MB) JSON documents from a medical
provider
 JSON is multi-level (and often very deep).
 Manipulations are very intense.

 Because PL/JSON is using Oracle objects and
object-collections, it has a very noticeable impact on
server memory usage needed to make sure that
server has enough resourses.

Overall:
 Saved us from reinventing the wheel!
Written by people who REALLY know the business

33 of 43

PL/PDF (1)
Used for:
 Procedural constructor of PDF documents
 100% PL/SQL-based (source code is wrapped)
Various extensions

 Info:
 Commercial product (but prices are reasonable)
 Company website: http://plpdf.com/plpdf.php
 Current version: 4.1.0
 Important feature: works even on XE!
Also includes PL/DOCX (but we didn’t evaluate it)

34 of 43

PL/PDF (2)
Code sample
procedure InitDefault (l_blob OUT blob) is
begin
-- create new doc (with default settings) and first page
plpdf.Init;
plpdf.NewPage();

-- set font and add text
plpdf.SetPrintFont(
p_family => 'Arial', -- Font family: Arial
p_style => null, -- Font style: Regular
p_size => 12 -- Font size: 12
);

plpdf.PrintoutText(p_x => 20,p_y => 30,p_txt => 'Hello!');

-- close document and create PDF as BLOB
plpdf.SendDoc(p_blob => l_blob);

end;

35 of 43

PL/PDF (3)
Our story:

 Currently in production and used for multiple purposes:
1. Server-generated emails with attached documents
2. Highly customizable reports (where defining a single

template is too difficult)
3. Transmitting sensitive information (PDFs can be encrypted

and password-protected)
 Very limited support of fillable fields

Overall evaluation:
 Same issue as PL/JSON – significant memory footprint
 Very convenient substitution of extremely complex

reporting tools
 Somewhat time consuming to develop because every

line has to be scripted.

36 of 43

IText (1)
Used for:
 Procedural constructor of PDF documents
 100% Java-based

 Info:
 “Sort of” free (AGPL), but also there are commercial

implementations (http://itextpdf.com/)
 SourceForge: https://sourceforge.net/projects/itext/
 Current version: 5.5.9

37 of 43

IText (2)
 Code sample
public class HelloWorldNarrow {

/** Path to the resulting PDF file. */
public static final String RESULT

= "results/part1/chapter01/hello_narrow.pdf";
public static void main(String[] args)

throws DocumentException, IOException {
// step 1
// Using a custom page size
Rectangle pagesize = new Rectangle(216f, 720f);
Document document = new Document(pagesize, 36f, 72f, 108f, 180f);
// step 2
PdfWriter.getInstance(document, new FileOutputStream(RESULT));
// step 3
document.open();
// step 4
document.add(new Paragraph(

"Hello World! Hello People! " +
"Hello Sky! Hello Sun! Hello Moon! Hello Stars!"));

// step 5
document.close();

}
}

38 of 43

IText (3)
Our story:
 Currently in production as a part of PL/SQL-based

solution (no wrapped code)
 Still under AGPL (or at least that’s what I’ve been

told)
 Creates PDF documents with fillable fields (in DEV)
 Merges data to created PDFs (in PROD)

Overall evaluation:
Very convenient and flexible
AGPL license may be a show-stopper for many

organizations
 Reasonably low performance impact (definitely

cheaper than roundtrips to an application server)

39 of 43

XLSX (1)
Our own solution
… yes, this time we reinvented the wheel, but:

 XLSX is generic enough to be generated
 All built-in computations are reasonably straightforward.

Used for:
 Procedural constructor of Excel reports in XLSX

format (including multi-worksheet)
Also needed for reports that are wider than normal

pages
 100% PL/SQL-based

40 of 43

XLSX (2)
Code sample
--header
dbms_lob.append(v_XML_cl,vc_style_tx);
dbms_lob.append(v_XML_cl,
'<Worksheet ss:Name="EA NETRES EAD REPORT"><Table>
<Column ss:Width="200"/>
<Column ss:StyleID="RptDetail" ss:AutoFitWidth="0" ss:Width="42" ss:Span="9"/>
<Column ss:Index="12" ss:StyleID="RptDetail" ss:Width="50.25"/>
<Column ss:AutoFitWidth="0" ss:Width="5.25"/>
<Column ss:StyleID="RptDetail" ss:AutoFitWidth="0" ss:Width="42"
ss:Span="3"/>');

--Title and Header
dbms_lob.append(v_XML_cl,
'<Row><Cell ss:MergeAcross="16" ss:StyleID="Title">

<Data ss:Type="String">EA NEC/EAD REPORT</Data></Cell>
</Row>
<Row><Cell ss:MergeAcross="16" ss:StyleID="RptDetail" >

<Data ss:Type="String">Organization:'||v_org_tx||'</Data></Cell>
</Row>
<Row>
<Cell ss:MergeAcross="11" ss:StyleID="BorderB">

<Data ss:Type="String">NEW ENLISTMENT CONTRACT STATUS</Data></Cell>
<Cell ss:Index="14" ss:MergeAcross="3" ss:StyleID="BorderB">

<Data ss:Type="String">EAD STATUS</Data></Cell>
</Row>');
...

41 of 43

XLSX (3)
Our story:
 Currently in production in reporting module as

alternative to PDF output (especially whenever PDF
formatting would be unacceptable)

Overall evaluation:
 Lots of manual coding, but solved exactly what

needed to be solved
Very functional because lots of people still prefer to

do their own calculations in Excel (especially senior
level management folks)

42 of 43

Summary

 It is possible to manage documents directly in
the database
… although, it may often be counterintuitive.

 It is possible to have flexible reporting
… by utilizing repository-based solutions.

There are even some third-party tools
(commercial and free) to make your life simpler
… so you don’t need to reinvent the wheel.

43 of 43

Contact Information
 Michael Rosenblum – mrosenblum@dulcian.com
 Dulcian, Inc. website - www.dulcian.com
 Blog: wonderingmisha.blogspot.com

	Printing Without Printers: �A Database-Centric Approach �to �Document Exchange and Reporting
	Who Am I? – “Misha”
	Documents???
	Documents…
	Documents!!!
	Documents ?!?!
	Well…
	Known Knowns
	Known Unknowns
	Unknown Unknowns
	So?
	Slide Number 12
	Client-Side (1)
	Client-Side (2)
	Middle Tier (1)
	Middle Tier (2)
	Server-Side (1)
	Server-side (2)
	Why use the database?
	Slide Number 20
	Getting Agile
	Repository-Based Development
	Data model (Main)
	Data model (Access)
	Maintenance UI Example
	Running UI Example
	Important Lessons
	Slide Number 28
	Tools Overview
	PL/JSON (1)
	PL/JSON (2)
	PL/JSON (3)
	PL/PDF (1)
	PL/PDF (2)
	PL/PDF (3)
	IText (1)
	IText (2)
	IText (3)
	XLSX (1)
	XLSX (2)
	XLSX (3)
	Summary
	Contact Information

