
Productive JavaScript Development: Oracle JET

Intro

Welcome

JavaScript-based, single-page applications (SPAs) are incredibly popular these days - and for good reason. This style of application
provides developers with a great deal of flexibility and control, while end users enjoy the responsiveness and speed that comes with
fewer full-page reloads.

To assist developers working on SPAs, Oracle developed the JavaScript Extension Toolkit (JET). Oracle JET is a collection of open-
source JavaScript libraries, combined with a set of Oracle-contributed JavaScript libraries that make it as simple and efficient as possible
to build applications that consume and interact with Oracle products and services.

HOL Overview

In this hands-on lab, you will be building an Oracle JET application from scratch. Here's an overview of what you'll be doing:

Part 1: Creating a New Project
Part 2: Adding Directories and Files
Part 3: Adding Navigation and Routing
Part 4: Adding a Model, Collection, and a Table
Part 5: Adding a Model, Collection, and a Chart

Prerequisites

The instructions in this lab are based on the NetBeans IDE with the Oracle JET Support plugin. NetBeans is a free, cross-platform IDE
that provides excellent support for building JET applications. For this lab, NetBeans will:

download the JET source for the new project
run the application via a built-in web server

If you don't want to use NetBeans, you'll need to adapt the instructions to meet your needs. The base distribution of Oracle JET can be
downloaded here: http://www.oracle.com/technetwork/developer-tools/jet/downloads/index.html

If you don't have a web server, you can run the app in FireFox as it allows JavaScript applications to run from the file system.

https://netbeans.org/
http://www.oracle.com/technetwork/developer-tools/jet/downloads/index.html

Part 1: Creating a New Project

Let's kick things off by creating a new project in NetBeans using the base distribution of Oracle JET. The base distribution only includes
JET and its dependencies which makes it a great place to start learning from the ground up.

Open the NetBeans IDE and follow these steps...

1. Click the New Project button.

2. Select Oracle JET Base Distribution. If you don't see the Oracle JET Base Distribution option, you may need to install the Oracle
JET plugin in NetBeans. Go to Tools > Plugins. Click Available Plugins and search for "jet". Install the plugin named Oracle JET
Support. You may need to restart Netbeans before the plugin works.

3. Click Next >.

4. Set Project Name to EmpApp.
5. Click Finish.

After clicking Finish, NetBeans will download the latest version of the Oracle JET base distribution and use it to create and open the new
project. Be patient as this may take a minute or two.

Note that NetBeans provides additional options for starting Oracle JET projects under the "Samples > HTML5/JavaScript" category. The
Oracle JET QuickStart Basic option is a great way to kick-start new projects as it includes responsive menus and a basic router
configuration ready to go!

Part 2: Adding Directories and Files

The base distribution of JET is very bare-bones - we'll need to add some directories and files to get things rolling. We'll start by creating
some directories that will be used in later sections. After that we'll create the index.html and the main.js files.

Unlike typical web applications that have many html "pages", SPAs typically have one index.html file that acts as the shell of the
application. The index.html is loaded when a user first navigates to the application and it's responsible for loading initial CSS and
JavaScript. In addition, the index.html provides some basic structure and entry points for Views and ViewModels, which will be covered in
the next part.

The main.js file serves as a starting point for all the other JavaScript files (many of which will only be loaded if needed).

1. Right-click the js directory and select New > Folder....

2. Set Folder Name to views.
3. Click Finish.

4. Repeat steps 1-3 to create a new folder named viewModels under the js directory.
5. Repeat steps 1-3 to create a new folder named models under the js directory.
6. Repeat steps 1-3 to create a new folder named collections under the js directory.
7. Locate and right-click js/libs/oj/v2.1.0/main-template.js and select Copy.

8. Right-click the js directory and select Paste.

9. Right-click /js/main-template.js and select Rename.

10. Set New Name to main.
11. Click OK.

12. Right-click Site Root and select New > HTML File.

13. Set File Name to index.
14. Click Finish. This should both create and open the file.

15. Replace the content in index.html with the code below and then save your changes.

<!DOCTYPE html>
<html lang="en-us">
<head>
 <title>Employee App</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- Main css file for the default Alta theme -->
 <link rel="stylesheet" href="css/libs/oj/v2.1.0/alta/oj-alta-min.css" type="text/css"/>

 <!-- RequireJS configuration file -->
 <script data-main="js/main" src="js/libs/require/require.js"></script>
</head>
<body>
 <div id="globalBody">
 Hello World!
 </div>
</body>
</html>

16. Click the green "run" button to run the application. You should see a browser open and display "Hello World!". You didn't think
you'd make it through this lab without a "hello world" did you? :)

Part 3: Adding Navigation and Routing

Now that we have some basic structure in place, let's get to something more fun: navigation and routing! Because SPAs don't use full
page reloads, we'll configure routing using Oracle JET's router along with Views and corresponding ViewModels. The term ViewModel
comes from the MVVM development pattern which stands for Model-View-ViewModel. MVVM is an offshoot of the MVC (Model-View-
Controller) pattern.

In MVVM, the ViewModel is a model that is specific to a View - meaning you'll find presentation related logic and data in the ViewModel.
The View is a template (HTML based in our case) that should reflect the current state of the ViewModel. Oracle JET uses Knockout.js as
the MVVM engine.

By default, Oracle JET looks in the views and viewModels directories to find these modules when needed (though that is configurable). As
you create the views, notice that they are just parts (sometimes called partials) of an HTML page. These partials are injected into the
page as needed.

1. Right-click the views directory and select New > HTML File.

2. Set File Name to home.
3. Click Finish. That should both create and open the file.

4. Replace the content of home.html with the following code and then save your changes. Notice the input which has a "data-bind"
property that references an ojComponent named ojInputText. This is a common pattern you will see in Oracle JET applications.

<h1>Home</h1>

<div>
 Change the value of the input below. This will update the value of the "someValue"
 property exposed in the ViewModel. The view will be updated to reflect the change
 so the div will reflect the current value of the input.

 That is two-way data binding in a nutshell!
</div>

<label for="text-input">Change me</label>

<input id="text-input" type="text" data-bind="
 ojComponent: {
 component: 'ojInputText',
 value: someValue,
 rawValue: someValue
 }" />

<div data-bind="text: someValue"></div>

5. Repeat steps 1-4 to create a new HTML file named employees in the views directory. Replace the content with the following code
and save your changes when done.

<h1>Employees</h1>

<div>
 Donec aliquet faucibus libero, ut tincidunt ipsum dictum vitae. Quisque lacinia aliquet tortor id consectetur.
 Nulla a rhoncus massa. In egestas tempus blandit. Duis gravida at erat vehicula condimentum.
 Mauris tincidunt dolor ut nulla convallis, eget tincidunt ex molestie.
</div>

6. Repeat steps 1-4 to create a new HTML file named header in the views directory. Replace the content with the following code and
save your changes when done.

<div class="oj-web-applayout-max-width oj-flex-bar oj-sm-align-items-center">
 <div class="oj-flex-bar-middle oj-sm-align-items-baseline">

 </div>
</div>
<div role="navigation" data-bind="
 ojComponent: {
 component: 'ojNavigationList',
 optionChange: $parent.navChange,
 navigationLevel: 'application',
 item: {template: 'navTemplate'},
 data: $parent.navDataSource,
 selection: $parent.router.stateId(),
 edge: 'top'
 }"
 class="oj-web-applayout-navbar oj-web-applayout-max-width oj-navigationlist-item-dividers oj-md-condense
 j-md-justify-content-center oj-lg-justify-content-flex-end">
</div>

7. Right-click the viewModels directory and select New > JavaScript File.

Right-click the directory and select .

8. Set File Name to home.
9. Click Finish. That should both create and open the file.

10. Replace the content of home.js with the following code and save your changes.

define(['ojs/ojcore', 'knockout', 'ojs/ojinputtext'],
 function(oj, ko) {
 /**
 * The view model for the home view
 */
 function HomeViewModel() {
 var self = this;

 self.someValue = ko.observable("Look at me, I'm something!");
 }

 return new HomeViewModel();

 }
);

11. Repeat steps 7-9 to create a new JavaScript file named employees in the viewModels directory. Replace the content with the
following code and save your changes when done.

define(['ojs/ojcore', 'knockout'],
 function(oj, ko) {
 /**
 * The view model for the employees view
 */
 function EmployeesViewModel() {
 var self = this;
 }

 return new EmployeesViewModel();
 }
);

12. Repeat steps 7-9 to create a new JavaScript file named header in the viewModels directory. Replace the content with the following
code and save your changes when done.

define(['ojs/ojcore', 'knockout'],
 function (oj, ko) {
 /**
 * The view model for the header view
 */
 function HeaderViewModel() {
 var self = this;

 // Application Name used in Branding Area
 self.appName = ko.observable("Employee App");
 }
 return new HeaderViewModel();
 }
);

13. Open the index.html file and replace just the body portion with the following code. Don't forget to save your changes.

<body>
 <!-- template for rendering navigation items -->
 <script type="text/html" id="navTemplate">

 <!-- ko text: $data['name'] --> <!--/ko-->

 </script>

 <div id="globalBody">
 <div class="oj-web-applayout-page">

 <!-- This is where your header content will be loaded -->
 <header role="banner" class="oj-web-applayout-header"
 data-bind="ojModule: 'header'"></header>

 <!-- This is where your main page content will be loaded -->
 <div class="oj-web-applayout-max-width oj-web-applayout-content">
 <div class="oj-flex">
 <div class="oj-flex-item oj-flex">
 <div id="mainContent" role="main" class="oj-panel oj-margin oj-flex-item"
 data-bind="ojModule: router.moduleConfig">
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</body>

14. Open the main.js file and replace only the bottom portion that starts with "require(['ojs/ojcore'..." using the code that follows.
Save your changes when you are through.

require(['ojs/ojcore', 'knockout', 'jquery', 'ojs/ojknockout', 'ojs/ojrouter',
 'ojs/ojmodule', 'ojs/ojnavigationlist', 'ojs/ojarraytabledatasource'],
 function (oj, ko, $) { // this callback gets executed when all required modules are loaded
 var router = oj.Router.rootInstance;

 router.configure({
 'home': {label: 'Home', isDefault: true},
 'employees': {label: 'Employees'}
 });

 function RootViewModel() {
 var self = this;
 self.router = router;

 // Navigation data for nav bar

 var navData = [
 {name: 'Home', id: 'home'},
 {name: 'Employees', id: 'employees'}
];

 self.navDataSource = new oj.ArrayTableDataSource(navData, {idAttribute: 'id'});

 self.navChange = function(event, ui) {
 if (ui.option === 'selection' && ui.value !== self.router.stateId()) {
 self.router.go(ui.value);
 }
 };
 }

 oj.Router.defaults['urlAdapter'] = new oj.Router.urlParamAdapter();
 oj.Router.sync().then(
 function () {
 // bind your ViewModel for the content of the whole page body.
 ko.applyBindings(new RootViewModel(), document.getElementById('globalBody'));
 },
 function (error) {
 oj.Logger.error('Error in root start: ' + error.message);
 }
);
 }
);

Now when you run your application you should see a navigation bar at the top that can be used to transition the state of your application.
Note that your browser history will work despite the fact that you are not doing full page reloads.

Part 4: Adding a Model, Collection, and a Table

If ViewModels encapsulate presentation related logic, Models and Collections encapsulate the business logic of your application. They
provide abilities such as linking to RESTful APIs, converting data, doing validations, specifying defaults, etc. If you come from a database
background, it's probably easiest to think of models as a row in a table and collections as a table, or set of like models. Models and
collections are part of the Common Model API in Oracle JET which was originally based on Backbone.js.

The models and collections you create in this app will be linked to RESTful endpoints that were created using ORDS for this lab. Once in
place, they can be used in various Oracle JET components, such as the table and pagination controls we'll add in this part.

1. Right-click the models directory and select New > JavaScript File.

2. Set File Name to Employee.
3. Click Finish. That should both create and open the file.

4. Replace the content of Employee.js with the following code and save your changes. Notice that new models are created by
"extending" the base Model class.

define(['ojs/ojcore', 'ojs/ojmodel'],
 function (oj) {
 var Employee = oj.Model.extend({
 urlRoot: 'http://45.55.152.87:8080/ords/api/hr/employees',
 parse: function(emp) {
 return {
 id: emp.employee_id,
 firstName: emp.first_name,
 lastName: emp.last_name,
 salary: emp.salary
 };

 },
 parseSave: function(emp) {
 return {
 employee_id: emp.id,
 first_name: emp.firstName,
 last_name: emp.lastName,
 salary: emp.salary
 };
 }
 });

 return Employee;
 }
);

5. Right-click the collections directory and select New > JavaScript File.

6. Set File Name to EmployeeCollection.
7. Click Finish. That should both create and open the file.

8. Replace the content of EmployeeCollection.js with the following code and save your changes. Notice that new collections are
created by "extending" the base Collection class.

define(['ojs/ojcore', 'models/Employee', 'ojs/ojmodel'],
 function (oj, Employee) {
 var EmployeeCollection = oj.Collection.extend({
 url: 'http://45.55.152.87:8080/ords/api/hr/employees',
 fetchSize: 100,
 model: Employee
 });

 return EmployeeCollection;
 }
);

9. Open the views/employees.html file and replace the content with the following code, then save your changes.

<h1>These are employees!</h1>

<table id="table" summary="Employee List" aria-label="Employee Table"
 data-bind="ojComponent: {
 component: 'ojTable',
 data: employeesPagingTableDataSource,
 columnsDefault: {sortable: 'none'},
 columns: [
 {headerText: 'Employee Id', field: 'id'},
 {headerText: 'First Name', field: 'firstName'},
 {headerText: 'Last Name', field: 'lastName'},
 {headerText: 'Salary', field: 'salary'}
]
 }">
</table>

<div id="paging"
 data-bind="ojComponent: {
 component: 'ojPagingControl',
 data: employeesPagingTableDataSource,
 pageSize: 20
 }">
</div>

10. Open the viewModels/employees.js file and replace the content with the following code. Save your changes when finished.

define(
 ['ojs/ojcore', 'knockout', 'collections/EmployeeCollection', 'ojs/ojcollectiontabledatasource',
 'ojs/ojtable', 'ojs/ojpagingcontrol', 'ojs/ojpagingtabledatasource'],
 function(oj, ko, EmployeeCollection) {
 function employeesViewModel() {
 var self = this;
 var employeesColl;
 var employeesCollectionDataSource;

 employeesColl = new EmployeeCollection();

 employeesCollectionDataSource = new oj.CollectionTableDataSource(employeesColl);

 self.employeesPagingTableDataSource = new oj.PagingTableDataSource(employeesCollectionDataSource);
 }

 return new employeesViewModel();

 }
);

Now when you run the application and navigate to the employees page, you should see the employee data load and the pagination
controls should allow you to navigate the data.

Part 5: Adding a Model, Collection, and a Chart

One of the things that differentiates Oracle JET from other JavaScript frameworks is its comprehensive set of data visualizations. You can
have a look at the various offerings here: http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?
component=home&demo=rootVisualizations

In this part we'll add a pie chart to the home page which shows the total employee salary by department.

1. Right-click the models directory and select New > JavaScript File.

2. Set File Name to Department.
3. Click Finish. That should both create and open the file.

http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootVisualizations

4. Replace the content of Department.js with the following code and save your changes.

define(['ojs/ojcore', 'ojs/ojmodel'],
 function (oj) {
 var Department = oj.Model.extend({
 urlRoot: 'http://45.55.152.87:8080/ords/api/hr/departments',
 parse: function(dept) {
 return {
 id: dept.department_id,
 name: dept.department_name,
 sumSalary: dept.sum_emp_salary
 };
 },
 parseSave: function(dept) {

 return {
 department_id: dept.id,
 department_name: dept.name
 };
 }
 });

 return Department;
 }
);

5. Right-click the collections directory and select New > JavaScript File.

6. Set File Name to DepartmentCollection.
7. Click Finish. That should both create and open the file.

8. Replace the content of DepartmentCollection.js with the following code and save your changes.

define(['ojs/ojcore', 'models/Department', 'ojs/ojmodel'],
 function (oj, Department) {
 var DepartmentCollection = oj.Collection.extend({
 url: 'http://45.55.152.87:8080/ords/api/hr/departments',
 fetchSize: -1, // Disables pagination/virtualization
 model: Department
 });

 return DepartmentCollection;
 }
);

9. Open the views/home.html file and replace the content with the following code, then save your changes.

<h1>Home</h1>

<div id="barChart"
 data-bind="ojComponent: {
 component: 'ojChart',
 type: 'pie',
 orientation: 'auto',
 series: deptChartData,
 hoverBehavior: 'dim',
 sorting: 'descending'
 }"
 style="max-width:500px;width:100%;height:350px;">
</div>

10. Open the viewModels/home.js file and replace the content with the following code. Save your changes when finished.

define(['ojs/ojcore', 'knockout', 'collections/DepartmentCollection', 'ojs/ojchart'],
 function(oj, ko, DepartmentCollection) {
 /**
 * The view model for the home view
 */
 function HomeViewModel() {
 var self = this;
 var departmentsColl;

 departmentsColl = new DepartmentCollection();

 // Populate the collection from the server
 departmentsColl.fetch()
 .then(function() {
 // Convert the collection to a simple array for the chart
 var data = departmentsColl.map(function(deptModel) {
 return {
 name: deptModel.get('name'),
 items: [deptModel.get('sumSalary')]
 };
 });

 // Remove departments with a sumSalary of 0
 data = data.filter(function(dept) {
 return dept.items[0] !== 0;
 });

 // Update the value of the observableArray
 self.deptChartData(data);
 });

 self.deptChartData = ko.observableArray([]);
 }

 return new HomeViewModel();
 }
);

If you run your application now and navigate to the home page, you should see a pie chart that shows the sum of the employee salary by
department.

Summary

We covered many different aspects of Oracle JET in this lab, including:

Modules
Views & ViewModels
Routing
Models & Collections
Table and Chart Components

In reality, we've just scratched the surface with Oracle JET. If you're interested in learning more, be sure to check out the examples and
cookbook sections of the Oracle JET website.

Also, don't forget to follow Oracle JET on Twitter for tips, announcements, and other content related to Oracle JET!

http://www.oracle.com/webfolder/technetwork/jet/globalExamples.html
http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html
https://twitter.com/OracleJET

