A Developer’'s Approach
to
Code Management

Michael Rosenblum

www.dulcian.com

Who Am |I? — “Misha’

& Oracle ACE
Oracle PL/SQL Export

¢ Co-author of 3 books DI_‘-MJ““.IP:"EE PL/SQL Practices
> PL/SOL for Dummies ‘ -
> Expert PL/SQL Practices

> Oracle PL/SQL Performance Tuning Tips & Techniques

¢ Known for:

> SQL and PL/SQL tuning
» Complex functionality
= Code generators
= Repository-based development

/

@ -

Code Management???

¢ The biggest problem:
> No agreement about what 1Is MANAGEMENT

> Even less agreement about what 1s CODE

¢ Results:

> Instead of comparing concepts we usually compare
implementations =» therefore we are comparing apples to
oranges!!!
= ... because each implementation implies a very specific set of
requirements.

Definitions (1)

¢ Code = Anything that defines and implements business
rules

> Programs
> Structural rules (constraints!)

> Metadata + Generators (programs that write programs that ...)

S22
(D] /,g\‘/\\\Q//
>

A N
'
%y (-_;-.:;._z{;f';‘_";'-_}”7:;_7}?.,}:-:{'5{:7:3i

Definitions (2)

¢ Management = understanding how your code base
transforms over a period of time and being able to explain:

« What changes happen?
= How the changes happen?
= Why the changes happen?

Who benefits?

¢ Implementations:

» Management-oriented approach
= Key question: “Who done 1t?”

= Solution: Try to preserve every line change and associate it with a
specific person =» foremost forensic tool (blaming game!)

= Problem: Large systems are quickly overwhelmed by the total volume
of micro-changes
> Development-oriented approach m
= Key question: “How do we create the next release?”

= Solution: Managing macro-changes instead of micro-changes
= Problem: Requires a different level of organization

&l. Area;:
> Database

¢ 1l. Language:

> PL/SQL
olll. Level:

» Development-oriented approach

¢ Please, remember:

> There i1s no such thing as “all-or-nothing” approach!

» Complexity/cost of the solution should match the scope of a
problem

Synonym Manipulation

¢ Solution:

> Synonyms for external references + unique object names for all
Versions:

= ... 1.e. synonym A PKG + package A PKG V1, A PKG V2 etc.
¢ Downside:
» Recompilation of referenced objects

¢ Usetul 1n:

> Environments with clear separation of engine code vs. customer
code

10 of 38

Synonyms - lllustration
Engme PackageA V2 User COde 1
Synonyms:
* Engine Package A User code 2
* Engine Package B

Engine Package A-V3
Engine Package B-Vl
Englne Package B — V2 U ser co d e 3
Engine Package B-V3

11 of 38

Triggers

¢ Solution:

> Setting up BEFORE/AFTER DDL triggers in relevant schemas

= Database-level triggers must be disabled before any Oracle patches =
high cost of error =» strongly NOT recommended

= Invalid triggers would block ANY DDL from being fired

= BEFORE-triggers also work as security features
= Example: blocking TRUNCATE command
——

= Exceptions raised in AFTER-trigger would not impact ,
execution itself @

12 of 38

Triggers — Example (1)

CREATE TABLE ddl audit tab (
ddl type tx VARCHARZ2 (30),
object type tx VARCHARZ (30),
object name tx VARCHAR?2 (30),
ddl date dt TIMESTAMP,
code cl CLOB) ;

CREATE OR REPLACE TRIGGER ddl_audit_trg BEFORE DDL ON SCHEMA
DECLARE

v_lines nr PLS INTEGER;

v_sgl tt ora name list t; -- TABLE OF VARCHARZ2 (64)

v_cl CLOB; /////’

PROCEDURE p add (i tx VARCHARZ2Z) IS

BEGIN
dbms lob.writeappend(v_cl,length(v_buffer tx), v buffer tx);
END;

13 of 38

Triggers — Example (2)

BEGIN
—-— security section
IF ora dict obj name = 'DDL AUDIT TAB' THEN
raise Application error (-20001, 'Cannot touch DDL AUDIT TAB!');
END IF;

-— put DDL together
v_lines nr := ora sqgl txt(v sgl tt);
dbms lob.createTemporary (v _cl, true,dbms lob.call);
FOR 1 IN 1..v lines nr LOOP
p add(v_sqgl tt(i));
END LOOP;

—-— store
INSERT INTO ddl audit tab
(ddl type tx,object type tx,object name tx,ddl date dt,code cl)
VALUES
(ora sysevent,ora dict obj type,ora dict obj name, SYSTIMESTAMP,v cl);
END; 14 0f 38

Triggers — Example (3)

SQL> CREATE TABLE tstl (a number);
Table created.

SQL> SELECT * FROM ddl audit tab;
DDL_TYPE_TX OBJECT TYPE TX OBJECT NAME TX DDI_DATE DT CODE_CL

TESTO1 29-JAN-14 create table tstl (a number)

SQL> TRUNCATE TABLE ddl audit tab;
TRUNCATE TABLE ddl audit tab
*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-20001: Cannot touch DDL AUDIT TAB!
ORA-06512: at line 24
SQL> SELECT count (*) FROM ddl audit tab;
COUNT (*)

15 of 38

Homegrown Versioning (1)

¢ Problem:
> Classic 3-tier IT system =» significant downtime cost/efforts
> Small part of a system has constant flow of change requests

> Structure of requests is very clear

= Take N parameters / Do something / Show results ,

¢ Conclusion:

> The most efficient method is to introduce a localized
repository-based purpose-built solution.

16 of 38

/

@ -

Homegrown Versioning (2)

¢ Solution:
1. The system must store a list of registered modules in the
repository.
2. Each module must satisfy the following conditions:

= Take up to 5 input parameters (some optional, some mandatory).
= Return formatted CLOB as an output

The system has a notion of editions that can be associated with the
module.

The system uses the default edition.

Each user may have access to different editions instead of the
default.

17 of 38

Sample

CREATE FUNCTION f getEmp CL (i job tx VARCHARZ, 1 hiredate dt DATE:=NULL)

RETURN CLOB
IS
v_out cl CLOB;
PROCEDURE p add(pi tx VARCHARZ) IS BEGIN
dbms lob.writeappend (v _out cl,length(pi tx),pi tx);
END;

BEGIN
dbms lob.createtemporary(v_out cl,true,dbms lob.call);
p_add('<html><table>');

FOR ¢ IN (SELECT '<tr>'||'<td>'| |empno| |'</td>"]|
'<td>'| lename| | '</td>" | | '</tr>"' row tx
FROM emp
WHERE job = i job tx
AND hiredate >= NVL (i hiredate dt,add months (sysdate,-36))
) LOOP
p add(c.row tx);
END LOOP;
p_add('</table></html>");
RETURN v_out cl;

18 of 38

MODULE_TAB
module id NUMBER [PK],
displayName tx VARCHAR2(256),
module tx VARCHAR2(50),
vl label tx VARCHAR2(100),
vl type tx VARCHAR2(50),
vl required yn VARCHAR2(1),
vl lov_tx =~ VARCHAR2(50),
vl convert tx VARCHAR2(50),
v2 label tx VARCHAR2(100),
v2 type tx VARCHAR2(50),
v2 required yn VARCHAR2(1),
v2 lov_ tx ~ VARCHAR2(50),
v2 convert tx VARCHAR2(50)

Data Model

EDITION TAB
edition_id NUMBER PK,

name tx VARCHAR2(50),
edition_rfk NUMBER

MODULE_EDITION_TAB
module edition_id NUMBER PK,
module id NUMBER,
edition_id NUMBER

19 of 38

Data Repository

-—- register modules
INSERT INTO module tab (module id,displayName tx,module tx,
vl label tx, vl type tx, vl required yn,
vZ label tx, v2Z2 type tx, vZ2 required yn, vZ convert tx)
VALUES (100, 'Filter Employees by Job/Hire Date', 'f getEmp cl',
'Job', '"TEXT','Y', 'Hire Date',
"DATE', 'N', 'TO _DATE (v2_tx,''YYYYMMDD'')');
INSERT INTO module tab (module id,displayName tx,module tx,
vl label tx, vl type tx, vl required yn)
VALUES (101, 'Filter Employees by Job', 'f getEmp cl', 'Job', 'TEXT','Y'");

-- create two editions

INSERT INTO edition tab (edition id, name tx, edition rfk) VALUES (10, 'Default', null);
INSERT INTO edition tab (edition id, name tx, edition rfk) VALUES (11, 'New Edition',10);
-- associate modules with editions

INSERT INTO module edition (me id,module id,edition id) wvalues (20,100,10);

INSERT INTO module edition (me id,module id,edition id) wvalues (21,101,11);

-- associate users with editions

INSERT INTO user edition (ue id, user tx, edition id) values (30, 'HR',10);

INSERT INTO user edition (ue id, user tx, edition id) values (31,'CE',11);
20 of 38

Query Repository

SQL> SELECT m.module id, m.displayname tx
FROM module tab m,
module edition me
WHERE m.module id = me.module id
AND me.edition id IN (SELECT edition id
FROM user edition
WHERE user tx = "HR"') ;
MODULE ID DISPLAYNAME TX

100 Filter Employees by Job/Hire Date

SQL> SELECT m.module id, m.displayname tx
FROM module tab m,
module edition me
WHERE m.module id = me.module id
AND me.edition id in (SELECT edition id
FROM user edition
WHERE user tx = 'OE');

101 Filter Employees

21 of 38

Wrapper

CREATE OR REPLACE FUNCTION f wrapper cl (i module id NUMBER,
i vl tx VARCHARZ:=null,
i v2 tx VARCHARZ2:=null)
RETURN CLOB
IS
v_out cl CLOB;
v_sqgl tx VARCHAR2 (32767) ;
v_rec module tab%ROWTYPE;
BEGIN
SELECT * INTO v rec FROM module tab WHERE module id=i module id;
IF v_rec.vl label tx IS NOT NULL THEN
v _sqgl tx:=nvl (v _rec.vl convert tx,'vl tx');
END IF;
IF v_rec.v2 label tx IS NOT NULL THEN
v _sgl tx:=v sql tx||','|[nvl(v_rec.vZ2 convert tx,'vZ tx'");
END IF;

v_sqgl tx:='DECLARE '||chr(10) ||
' vl tx VARCHAR2 (32767) :=:1;"| [CHR(10)
' v2 tx VARCHAR2 (32767) :=:2;"| [CHR(10)
'"BEGIN '| |CHR(10) ||
' tout:="||v_rec.module tx||['('||v_sqgl tx||");"[|CHR(10) ||
'END; ';
EXECUTE IMMEDIATE v sqgl tx USING i vl tx,i v2 tx, OUT v out cl;
RETURN v _out cl;

22 of 38

Usage

¢ Safe solution:
> All user-enterable data 1s passed via bind variables.
> All structural elements are selected from the repository.

SQL> SELECT f wrapper cl (100, 'PRESIDENT', '19001010")
2> FROM DUAL;

F WRAPPER CL (100, 'PRESIDENT', '19001010")
<html><table><tr><td>7839</td><td>KING</td></tr></table></html>

CYBER

SAl”’l'Y

23 of 38

Real Life

¢ Major challenge: p——

> Incremental roll-over, 1.e. co-existence of old and new
code base

¢ Manual solutions = nightmare!

¢ Alternative (starting Oracle 11gR2) —
Edition-Based Redefinition

What is EBR?

¢ Enabling editions:
> Done for a specified user:
> Editionable objects are uniquely identified by name and edition
= 1.e. multiple versions of the same object at the same time.

> Editions are shared across the database.
= Default =ORA$BASE
= All other editions are children/[grand]children of ORA$SBASE
= Editions are linked in a chain (ORA$BASE — Edition 1 — Edition 2).
> One current edition in the session
= ... but you can change it with ALTER SESSION.
> For the new session — the current edition is
= ... either the default [ALTER DATABASE DEFAULT EDITION...]
= ... or explicitly specified in the connection string.
> Special editioning views with cross-edition triggers
= Fire different code in Parent/Child edition

26 of 38

What objects are editionable”?

& As of Oracle 12c¢:
> SYNONYM
> VIEW
> SQL translation profile

> All PL/SQL object types:
= FUNCTION
= LIBRARY
= PACKAGE and PACKAGE BODY
= PROCEDURE
= TRIGGER
= TYPE and TYPE BODY

¢ Key restriction:

» Non-editioned objects cannot depend upon editioned ones

Key Improvements in Oracle 12c (1)

& New clauses for materialized views and virtual columns

-— [evaluation edition clause]
EVALUATE USING { CURRENT EDITION | EDITION edition | NULL EDITION }

—-— [unusable before clause]
UNUSABLE BEFORE { CURRENT EDITION | EDITION edition }

—-— [unusable beginning clause]
UNUSABLE BEGINNING WITH {CURRENT EDITION | EDITION edition| NULL EDITION}

¢ Changed granularity of what can/cannot be editioned

> 11gR2: Editioned-enabled schema means that ALL types/objects become
editioned.

> 12¢: You can edition-enable only some types of objects:

ALTER USER user ENABLE EDITIONS [FOR type [, type]...

29 of 38

Key Improvements in Oracle 12c (2)

¢ You can explicitly make potentially editionable objects NON-
editionable:

> ... for example, to build function-based indexes

CREATE USER ebrl IDENTIFIED BY ebrl

DEFAULT TABLESPACE USERS TEMPORARY TABLESPACE TEMP

ENABLE EDITIONS; -- enable editions either directly/via ALTER USER
created.

CREATE NONEDITIONABLE FUNCTION ebrl.f toDate udf
(1 _tx VARCHARZ, 1 format tx VARCHARZ:='YYYYMMDD')

15 /
Function created.

SQL> CREATE INDEX ebrl.test idx ON ebrl.test tab(f toDate udf(ddl tx));
Index created.

30 of 38

Impact for Code Management?

4 You can
> Create logical packaging of server-side code base
= ... 1.€. clearly separate different code groups
> Have multiple versions of the code in the database at the same time

= ... 1.e. you can compare behavior/performance exactly in the same
conditions (data/hardware).

> Quickly switch between versions without any 1nstallation required
= ... 1.e. shorten response time in an emergency.
4 Y ou cannot
> Easily edition structural elements (1.e. tables/indexes etc.)
= ... although you can play synonym games which ARE editionable.

> Easily edition data
= ... although you can introduce temporary data visibility rules.

31 of 38

Production Environments
and

Performance-Related Code Management

Deployment Architectural Flaw

¢ Condition:
> Code 1s constantly moving between DEV/TEST/PROD
> DEV <> TEST <> PROD!

¢ Problem:

> How can you be sure that functionally correct changes don’t
negatively impact performance???
= ... Well, you don’t ®

Areas of Interest

¢ Hardware/Networking

> ... because even the smallest firewall setting can be disastrous.

¢ Data volume
> ... because PROD 1s ALWAYS larger than TEST.

& User volume

> ... because Oracle has lots of shared resources, you can
encounter unexpected bottlenecks.

Most Important Deployment Question

¢ You HAVE to have a clear answer BEFOREHAND:

) —

> If anything goes wrong, how do you fall back? Back
¢ Why? i £

: : CStore
> More time to figure this out — more losses/more bugs e

= ... and more stress on everybody

> Management should understand costs/risks associated with
code versioning.

= ... otherwise you get into continuous deployment nightmare (aka
Agile Development ©)

350f 38

Approaches

¢ 1. Entire system versioning

> Recovery 1s based on complete backup of the system

= ... preferably on separate hardware
¢ 2. Limited-scope code modification

> Recovery 1s based on knowing exactly what changed

> ... preferably via metadata-based form (EBR, repositories)

¢ 3. Everything else

» ... sorry, no idea what to do ®

Summary

¢ Fixing problems of existing systems 1s one of the main development
tasks 1n any organization
> ... S0, you have to think about code management from the very beginning.
¢ Logical notion of “editions” helps thinking about code deployments
> ... whether you use EBR or not. '

¢ Some concepts are common:
> Micro-managing your changes <> good code versioning

> Performance problems are resolved only when they are deployed to PROD
and there are no side effects.

> Successful code versioning leads to better overall system performance.

> The best way to validate performance 1s to have old/new code coexist at the
same time [hint: EBR!]

37 of 38

Contact Information

¢ Michael Rosenblum — mrosenblum(@dulcian.com
4 Dulcian, Inc. website - www.dulcian.com

¢ Blog: wonderingmisha.blogspot.com

Expert

PL/SQL Practices

Oracle PL/SQL

Oracle PL/SOL
Performance Tuning Tips
Rest of Us! 0 & Techniques
P [/

- po——

Available NOW:
Oracle PL/SQOL Performance Tuning Tips & Techniques

38 of 38

