Who's Down wit' MPP?

Contract of the Post-Relational Revolution

David Teplow

Who am I?

- Database architect / developer since the first release of the first RDBMS (Oracle v2; 1981)
- Helped launch the Northeast OUG in 1983
- Founded Database Technologies in 1986
- NOUG President from 1992 1999
- Founded Integra Technology Consulting in 2000
- Served on the IOUG board from 2003 2008
- Focused on Hadoop / Big Data since 2012

TECHNOLOGY CONSULTIN

(IOUG)

The Evolution of Computing

The Evolution of Shaving

The MPP Breakthrough

- In 2003 & 2004, Google published papers on:
 - <u>Google File System</u>: A way to distribute data across a self-healing cluster of servers.
 - <u>MapReduce Processing</u>: A way to process data that takes advantage of data locality and parallel processing.
- A team at Yahoo! borrows these techniques for its purposes, then creates *Hadoop* as an open source project in 2006

MPP Proliferates

- 2006 Hadoop <<u>http://hadoop.apache.org/</u>>
- 2006 Google BigTable <<u>https://cloud.google.com/bigtable/</u>>
- 2006 MarkLogic <<u>http://www.marklogic.com/</u>>
- 2007 HBase <<u>http://hbase.apache.org/</u>>
- 2008 Cassandra <<u>http://cassandra.apache.org/</u>>
- 2008 CouchDB <<u>http://couchdb.apache.org/</u>>
- 2009 MongoDB <<u>https://www.mongodb.com/</u>>
- 2009 Redis <<u>http://redis.io</u>/>
- 2009 Riak <<u>http://basho.com/products/</u>>
- 2009 Voldemort <<u>http://www.project-voldemort.com/voldemort/</u>>
- 2011 Couchbase <<u>http://www.couchbase.com/</u>>
- 2012 AWS DynamoDB <<u>https://aws.amazon.com/dynamodb/</u>>
- 2013 AWS Redshift <<u>https://aws.amazon.com/redshift/</u>>
- 2015 Snowflake <<u>https://www.snowflake.net/</u>>

- Spark is an Open Source processing framework, (<u>spark.apache.org</u>) like MapReduce but better because it:
 - Uses Resilient Distributed Datasets (RDD) to harness a cluster's memory (the way Hadoop harnesses a cluster's disk and CPU)
 - Includes libraries for database access (Spark SQL)
 As well as for Streaming, Machine Learning and Graphics
 - *Does not* have its own storage layer, therefore
 requires HDFS, HBase, Cassandra, Amazon EC2, etc.

Classifying MPP Systems

- By Structure
 - ✓ Relational
 - ✓ Key-Value
 - ✓ Column-Oriented
 - ✓ Document-Oriented
- By Feature
 - ✓ Consistency
 - ✓Availability
 - ✓ Partition Tolerance

CHOOSE TWO

The CAP Theorem

The CAP Theorem states that you can only have two of the following features:

- <u>Consistency</u> each client always has the same view of the data
- <u>Availability</u> all clients can always read and write
- ✓ Partition Tolerance the system works well across physical network partitions

CAP Properties

• **Consistency** is a continuum:

Strong <----- consistency -----> Eventual / Strict (a.k.a. ACID versus BASE)

- Availability is also a continuum measured in <u>Latency</u> (a.k.a. Response Time)
- Partition Tolerance is binary either it does or it doesn't

Consistency and Availability (C+A)

- Relational Databases
 - Oracle
 - SQL Server
 - MySQL
 - PostgreSQL
- Database Appliances
 - Teradata/Aster
 - Greenplum
 - Vertica

C+A Limitations

- Massive data volumes or massive concurrency requires MPP
- MPP requires Partition Tolerance
 - If each node in a cluster is 99.9% reliable
 - = 1 failure every 3 years, on average
 - A 50-node cluster would be 95.1% reliable
 - = 1 failure every 3 weeks, on average

Availability and Partition Tolerance (A+P)

- Cassandra *
- CouchDB
- Riak
- Voldemort
- AWS DynamoDB **

A+P Limitations

- <u>Eventual</u> Consistency might be adequate for shopping carts or certain purchases
- Fund transfers and bidding systems require <u>Strong</u> Consistency

Consistency and Partition Tolerance (C+P)

- Hadoop Distributed File System (HDFS)
- BigTable
- MarkLogic
- HBase
- MongoDB
- Redis
- Couchbase
- AWS Redshift
- Snowflake

C+P Limitations

- Availability takes precedence over Consistency when even small increases in latency cause business issues
 - Amazon claims to lose 1% in sales when latency increases 1/10 of a second
 - Google found that traffic drops 20% when latency increases 1/2 of a second

Git Down wit' MPP

- MPP is an elegant, affordable and scalable way to handle extremely high data volumes, throughput and/or availability requirements
- MPP requires Partition Tolerance
- Business requirements will dictate whether to choose Consistency or Availability when network failures (inevitably) occur

Thank You

Q & A

I welcome your further questions or comments: DTeplow@IntegraTC.com

