@ ‘ ORACLE'
ACE

Unduly Forgotten
Performance Tuning Hero:
PL/SQL Hierarchical Profiler

Michael Rosenblum
www.dulclan.com

2 Who Am |? — “Misha”

¢ Oracle ACE |
| Oracle PL/SQL il

¢ Co-author of 3 books | DUNMIES PUSOL Practes
> PL/SQL for Dummies -
» Expert PL/SQL Practices
» Oracle PL/SQL Performance Tuning Tips & Techniques

¢ Known for: F Y T
» SQL and PL/SQL tuning &
> Complex functionality

= Code generators R |
- Repository-based development &Q;\. o

20f 42

-

2y Yet another performance
presentation???
+NO!

¢ Because:
» | will NOT talk about bind variables
= ... more than a few [dozen] times ©
> | will NOT mention extra paid options/products.
« Well...l am a [database] doctor, not a [salesman?] (c) Star Trek

> | will NOT be buzzword-compliant
= ... SO you can be [mostly] CLOUD- and EXADATA-free.

3 of 42

). Tuning (CFO Level)

& Means:

» Ensuring that available resources are used in the most efficient
way:
= No wasted resources
= No under-utilized resources

¢ Impact:

» Makes CFO happy when they look at hardware costs
= ...especially in the Cloud [for more, see my session #1454]

4 of 42

-

). Tuning (Practical Level)

& Means:

>MAKING END-USERS HAPPY!!

@ P

5 of 42

®

&= Reality Check

& End-users EXP[EH\“UNS

> DON’T CARE ABOUT: ReALITY
= CPU utilization/disk workload/etc.
= Being buzzword-compliant by using the coolest technology stack

> DO CARE ABOUT:

= Being able to run their business
= ... I.e. monthly report should not take two months to prepare!

= Time wasted looking at an hourglass on the screen

= ... although the notion of “wasted time” can be managed by using various
psychological tricks (managing expectations!).

6 of 42

&V S07?

¢ This talk is all about end-user requests... [wnen time is lost here

3. Application

Server
4. Send data from

2. Send data from app server to database

Client to app server
1. Client
5. Database
= 8. Return data from
E o app server to client 6. Return Data from

9. Data in
: database to app server
client 7. Datain
Application Server

7 of 42

4=V, Let's assume....

¢ You’ve proven that IT IS a database problem
» ... and not network traffic/slow client/etc.
» ... and not the number of round trips from the application server!

¢ You can modify database-related code

» Best case: You know how to use a “thick database approach”
= ... 1.e. you have high level PL/SQL APIs (that call various SQL queries)
= ...and these APIs are called by everybody else (Ul/reports/Bl/etc.)

» Worst case: If needed, you can add diagnostic PL/SQL calls around
SQL.

8 of 42

API call

APl response

A Perfect World

Database

PROCEDURE p_DoSomething IS
BEGIN

p_doSomethingElsel,;

sql_1;

p_doSomethingElseZ;

sql_2;

END;

Less Than Perfect World

Application Server

SQL
void doSomething or

{ PL/SQL

Database

doSomethingElse;

10 of 42

-

4D, THE Problem

¢ Database Is spending too much time doing something:
» Perfect Case [one SQL statement that does not contain any

user-defined functions]
= Many monitoring mechanisms
= Many ways to adjust
= Lots of coverage

» Real case [combination of SQL and PL/SQL]

= Hierarchical in its nature = something is calling something that is
calling something else

= Cannot be represented as a sequence of simple cases!

11 of 42

4D, The Hero

PL/SQL Hierarchical Profiler

12 of 42

-

< What can it do for you?

USEFUL STUFF el

&PL/SQL Hierarchical Profiler:

» Gathers hierarchical statistics of all calls (both SQL and
PL/SQL) for the duration of the monitoring
= ... Into a portable trace file
» Has powerful aggregation utilities
= ... both within the database and using a command-line interface
» Avallable since Oracle 11.1 [replaced PL/SQL Profiler]
= ... and constantly improved/adjusted even in 18c

13 of 42

-

P Introductory Case

¢ Background:

» You have multiple PL/SQL program units calling each other that
have SQL statements within them.

¢ Problem:

> You need to know where time 1s wasted and where 1t would be
best to spend time on tuning.

14 of 42

LT Intro (1)

SQL> CREATE DIRECTORY 10 AS "C:\I0";

SQL> exec dbms_hprof.start _profiling
(location=>"10",Ffilename=>"HProf.txt");

SQL> DECLARE

2 PROCEDURE p_doSomething (pi_empno NUMBER) IS

3 BEGIN

4 dbms_lock.sleep(0.1); [MﬂmﬂpanM:
5 END; WRITE is enough
6 PROCEDURE p_main 1S

7 BEGIN

8 dbms_ lock.sleep(0.5);

) FOR ¢ IN (SELECT * FROM emp) LOOP

10 p_doSomething(c.empno);

11 END LOOP; :

12 END; Spend time
13 BEGIN

14 p_main();

15 END;

16 /

SQL> exec dbms_hprof.stop profiling; 15 of 42

=y
¢ Raw file (C:\IO\HProf.txt) is not very readable...

P#V

Elapsed time
between events

Return
from
sub-program

. and so on

Intro (2)

PLSHPROF Internal Version 1.0

I PL/SQL Timer Started

PLSQL ™. """
SLSQL-""-""-"__
SLSQL-""-""-"__anonymous_block-P_MAIN"#980980e97e42f8ec #6
EESQL-"SYS"-"DBMS_LOCK"::9-"__

119
PLSQL."'SYS".
500373

586
SQL. ot

plsgl_vm"

anonymous_block""
pkg_init"
:11.""SLEEP"'#e17d780a3c3eae3d #197

"'DBMS_LOCK":

__sqgl_fetch_l1i1ne9" #9."4ay6mhcbhvbf2"

! SELECT * FROM SCOTT.EMP

3791

17
S>>

16 of 42

- -'u'.
// ’

Intro (3)

¢ ... but you can and make It readable via the command-line utility:

C:\Utl_File\lIO>plshprof -output hprof intro HProf.txt

PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.2.0.1.0
- 64bit Production

[8 symbols processed]
[Report written to "hprof _intro.html"]

<Show files> 17 of 42

-

). Intro Findings
& The results are:

» All of the time Is spent in DBMS_LOCK.SLEEP
= ... There are no descendants!

» When we drill down, the SLEEP procedure was called from
multiple parent modules!

= This Is Important because, in one case, time spent is 0.1 per call and in
the other is 0.5 per call.

» Oracle 12.2+ =» SQL ID and first 50 characters of SQL text
= Very nice, especially in the case of Dynamic SQL

¢ Many sorting/reporting options! _

- -'u'.
/ ’

¢ ... and also you can analyze the trace file via PL/SQL APIs

» Pro: easier to link with SQL statistics
» Contra: need extra READ privilege on the directory + need to create tables

beforehand

DECLARE
runid NUMBER;
BEGIN

runid -= DBMS HPROF.analyze("10", "HProf.txt");

Intro (4)

DBMS_OUTPUT.PUT_LINE("runid = " || runid);

END;

/

DBMSHP_RUNS

Run_ID PK

DBMSHP Parent Child Info

Run_ID PK
ParentSymID FK
ChildSymID FK

DBMSHP Function Info

SymbolID PK
Run_ID FK
Module

Type

Function

19 of 42

=V Intro (5)
¢ ... btw, ANALYZE has some nice options:

> Trace only specific entries

runid -= DBMS HPROF.analyze(" 10", "HProf.txt",
trace=> ""SCOTT"."F _CHANGE_TX"");

> Trace up to N occurrences

runid -= DBMS HPROF.analyze(" 10", "HProf.txt",
collect => 20,
trace=> ""'SCOTT"."F_CHANGE TX"");

> Trace starting from N-th occurrence

runid -= DBMS HPROF.analyze(" 10", "HProf.txt",
skip =>1,
trace=> ""'SCOTT"."F_CHANGE TX"");

20 of 42

True Story #1.:
Typical Hierarchical Profiler Use

0 Typical Situation

¢ Help-desk client’s performance complaints:

» Developer checked 10046 trace and couldn’t find anything
suspicious

» | noticed that the core query contains a user-defined PL/SQL
function.

& Action:

» Wrap suspicious call in HProf start/stop in TEST instance (with
the same volume of data)

22 of 42

- Suspect

SQL> exec dbms_hprof.start profiling (10", "HProf Casel.txt");

SQL> declare

2 V_tx varchar2(32767);

3 Dbegin

4 select listagg(owner_tx,",") within group (order by 1)

) into v_tx

6 from (

7 select distinct scott.f _change tx(owner) owner_ tx

8 from scott.test tab

9 E

10 end; 1. Only 26 owners!

11 / 2. Function is doing
basic formatting

SQL> exec dbms_hprof.stop profiling;

23 of 42

Profile

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed
Time (microsecs)

E@8391 microsecs (elapsed time) & 108086 function calls

|Suhtree” Ind%”Function” Ind%”Descendants” Ind%”talls” [nd%”FunctiDn MName ”SQL ID ”SQL TEXT
| se391) 1e0%| 14/ 8. 0%| 5058377| 100%| 2| @.8%|_ splsgql um
| 508377 1e0%| 171 @.o%|| ses2e6| 100%| 2| @.e%|| snonymous block

S@B206(10ef| 325438||64.6% 179776(|35. 4% 1|| @.e%|_ static sql exec lined {Line 4} |[27t27npwd3ndj EEEEET(;;EE;ESKDHHER—TK’ TR

[179776|[35.4%|| s6436/[13.1% 113340|(22. 3%/ [see00|[50. 0%||_ olsql wmgl

11334022, 3% 11334@ i all @, senaelsa. ?EEIT.;ECHHHu:_ X.F CHANGE TX
.I-\ —I E -

n BA FE ST g
ol o.0% o) 2 i 1\ a. S *_:u.DB |S_I:|F'Ru .STOP PROFTLING
(Line 453)

AN 1

50k calls?!

Here is my time!

<Show files> 24 of 42

). Findings
¢ Problem:

» Time Is wasted on very cheap function which is fired lots and lots
of times

> ... because the original developer “guessed” at the query behavior
> ... 1.e. he knew function was doing basic formatting, so the output

would also be distinct
> ... but forgot to tell that to the CBO = GIGO!

¢ Solution:
» Rewrite query in a way that helps the CBO

» ... and remind all developers:

= The number of function calls in SQL will surprise you if you don’t measure
them.

25 of 42

) Fix

SQL> exec dbms_hprof.start profiling (10", "HProf Casel fix.txt");

SQL> declare

2 V_tx varchar2(32767);

3 begin

4 select listagg(owner_tx,",") within group (order by 1)
) into v_tx

6 from (

7 select scott.f change tx(owner) owner_tx

8 from (select distinct owner

9 from scott.test tab)

10);

11 end; Filter first!
12 /

SQL> exec dbms_hprof.stop profiling

26 of 42

<Show files>

Updated Profile

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed
Time (microsecs)

18238 microsecs (elapsed time) & 58 function calls

|5ubtr‘ee” Ind%”Function” Ind%”[]escendants” Ind%”l:alls” Ind%”FunctiDn Name ||5QL ID ||5QL TEXT
| 18230| 100% 15/ @.1%|| 18215| 10e%| 2| 3.4%] plsql wvm |
[18215/ 100%| 139 o.8%| 18076)(99.2%| 2|| 3.4%||__anonymous block |

. . - SELECT LISTAGG({OWMER_TX,',') WITHIN
9 = {L j] Z5x)y =
18676((99. 2% 17954|[98.5% 122(| @.7% 1) 1.7% 1 o ine 4} [|b4pduc9zSxybc GROUP (ORDER B

122/ @.7% 42| 0.2% se|| o.4%| 2s|[44.5%|

g0l 0.4% se|| o. ol o. 26/|44.8% ?EE;T';TCHM’]“‘:— X.F_CHANGE TX
(Line 1)

Ve OF . 5T TLIN
ol a.e% a ; 2 . 1\1. 7% %.::..DB |S_I:|F'RD .STOP PROFTLTING
(Line 453}

1

26 calls
28 times faster!

27 of 42

-
SQL

Extra Test:
SQL Iin Java and SQL*Plus

(—é) Java

<~

28 of 42

2= b, Running directly from Java?

¢ Good news:
» It works!
» You can run multiple statements between START and STOP

& Bad news:

» No SQL IDs if they run directly (at least we couldn’t get it) =
confused statistics ®

« Environment: JDeveloper 119

29 of 42

= -.'.

: Java Sample

String sqgl =

"begin dbms_hprof.start profiling (location=>"10",Ffilename=>"Casela.txt"); end;";
CallableStatement stmt = conn.prepareCall(sql);
stmt.execute(); Difference!

PreparedStatement stmt2 = //////
conn.prepareStatement('select listagg(owner _tx,",") within group (order by 1) result \n" +

"from (select distinct scott.f_change_tx(owner) owner_tx\n" +
. from scott.test_tab) A ');
stmt2.execute();

stmt2 = conn.prepareStatement(*'select listagg(owner_tx,",") within group (order by 1) \n" +
"from (select distinct scott.f_change_tx(owner) owner_tx\n" +
. from scott.test_tab) B ™);

stmt2.execute();

sgql = "begin dbms_hprof.stop profiling; end;";
stmt = conn.prepareCall(sqgl);

stmt.execute(); Show fi 30 of 42
<ShOow T1les>

Impact - Java

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed|
Time (microsecs)

368188 microsecs (elapsed time) & 208003 function calls

|Subtr‘ee” Ind%”Function” Ind%”[!escendants” Ind%” Ealls” Ind%”FunctiDn Mame ||SQL ID”SQ_L TEKT|
| ses1ga!| 1eexll 13ggec|3z. 2l 229383/62,33neegenllse. ex|_plsql wn |
229279|(62.3%|| 229279|(62.3% 8| o.e%|100000|[50. 0%||SCOTT . F_CHANGE_TX.F_CHANGE_TX (Line 1) |
104/ 0.0% 104 0.0% o o.e% 1|| @.e%||__anonymous_block |
o 0.0 o) a.o%| g a.e%| 1|| o.e%||svs.DBMS_HPROF .STOP_PROFILING (Line 453)

No SQL IDs
100k Calls

<Show files> 31 of 42

y | e

Running directly from SQL*Plus?

¢ Bad news: the same problem with multiple statements:

SQL> exec dbms_hprof.start profiling
2 (location=>"10",filename=>"Caselb SQLPlus.txt");

SQL> select listagg(owner_tx,",") within group (order by 1)
2 Trom (select distinct scott.f change tx(owner) owner_ tx
4 from scott.test tab a);

SQL> select listagg(owner_tx,",") within group (order by 1)
2 Trom (select distinct scott.f change tx(owner) owner_ tx
4 from scott.test tab b);

SQL> exec dbms_hprof.stop profiling; 32 of 42

Impact — SQL*Plus

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed
Time (microsecs)

360092 microsecs (elapsed time) & 200803 function calls

|Suhtr‘ee!| Ind%”Function” Ind%”[]escendants” Ind%” Ealls” Ind%”FunctiDn Mame ||5QL ID”SQL TEJ{T|
360092|| 100%|| 136544/[37.9% 22354862, 1%||106001|[50. 8%||__plsql wm |
223513|[62.1%|| 223513|jg2.1% a|| o.0%||10000a]50. 0%|[sCOTT.F_CHANGE_TX.F_CHANGE_TX (Line 1) |

35 0. 05| 35 @. o B[@. o T|| ©.0%||__anonymous_block |

0| o.ox o) .o a|| o.o%|| 1|| ©.e%||svs.DBMS_HPROF.STOP_PROFILING (Line 453)]

No SQL IDs
100k Calls

<Show files> 33 0f 42

True Story #2:
Unexpected Usage

=%

r? 5

T

34 of 42

&= Background

¢ Third-party module code is slow

» Functionality: Take some tables and columns /return formatted
CLOB

» The code Is wrapped
» Original developers don’t want to accept the blame.

¢ Action:
» Gather as many statistics about the module as you can
» Wrap suspicious call in HProf start/stop

35 of 42

2y Statistics (1)

SQL> exec runstats pkg.rs start;
SQL> DECLARE

2 v CL CLOB; Wrapped module
3 BEGIN
4 v_cl :=wrapped pkg.f getdata cl("ename”, “"emp®);
) dbms_output.put_line("length: "] |LENGTH(v_cl));
6 END;

7/

length:84

SQL> exec runstats pkg.rs middle;

SQL> DECLARE

2 v_CL CLOB; 50000 rows
3 BEGIN

4 v_cl :=wrapped pkg.f getdata cl("object name®,"test tab");
5 dbms_output.put_line("length: "] |LENGTH(v_cl));

6 END;

7/

14 rows

length:1247887 36 of 42

- -'u'.
/ -

Statistics (2)

SQL> exec runstats pkg.rs_stop;
Runl ran in O cpu hsecs
Run2 ran in 3195 cpu hsecs

run 1

Name

STAT ..
STAT ..
STAT. ..
STAT ..
STAT ..

ran in 0% of the time

Runl

-physical reads direct (lob) 13
-physical reads direct temporary tablespace 13

lob writes 14

-.physical writes direct temporary tablespace 14
-.physical writes direct (lob) 14

Run2

49,991
49,991
50,000
50,145
50,145

Diff

49,978
49,978
49,986
50,131
50,131

Direct Temp 1/0?1?!

37 of 42

Function Elapsed Time (microsecs) Data sorted by Total Subtree
Elapsed Time (microsecs)

57671407 microsecs (elapsed time) & 100010 function calls

| subtree|| Ind#/[Function|| Ind3|Descendants| Indi|calls|| Ind%|[Function Name |
[57671288| 100%| 1304042| 2.3% 56367246[97.73| 1|[0.0%|{SCOTT.WRAPPED PKG.F GETDATA CL (Line 3) 4 —
[50800744||88.1%|[50800744|[g8. 13| of| 0.0%|s0000||50.0%|{s¥S.DBMS LOB.WRITEAPPEND (Line 1142) |
| 5565739 9.7%| 5565739| 9.7%| o[0.0%[50001/|50.0%|{SCOTT.WRAPPED PXG. sql fetch linel4 (Line 14) |
| 478|| 0.0%| 78| 0.o0%|| of o.o% 1|| 0.0%|[scOTT.WRAPPED PKG._ dvn_sql_exec linelo (Line 10)]
| 190| 0. 0% 190 0.o3f of o.0sf[2| 0.0%|s¥s.DBMS ASSERT.SIMPLE SQL NAME (Line 153) |
[119([0.0% 12| o0.o%ff 107|| o.o0sf| 1| 0.o0s|]s¥s.DBMS OUTPUT.PUT LINE (Line 109 |
[103|[0. 0% 103 o.osf of o.o8[1| 0.0%|sYs.DBMS OUTPUT.PUT (Line 77]
[95| 0.0%|| as|[0. o3 of o.os]] 1 0.0%|[s¥s.DBMS LOB.CREATETEMPORARY (Line 720) |
| af[0. 04| 4| 0. o4 of o.o8]] 1 0.0%|[s¥s.DBMS OUTPUT.NEW_LINE (Line 117)]
| o[o.os| of[0.0z of o.08f[1| o.os|s¥s.DEMS HPROF.STOP_PROFILING (Line 59) |

V. Analysis

¢ Problem #1: Direct 10 for all temporary LOB operations

» Could happen only if LOB variable is initiated as NOCACHE
via DBMS_LOB.createTemporary

¢ Problem #2: 10 operation for every row in conjunction
with fetch for every row

» Could happen only if DBMS LOB.writeAppend is called within
the loop

a=). Unwrapped code (FYI)

FUNCTION f_getData_cl(i_column_tx VARCHAR2, i1_table_tx VARCHAR2) RETURN CLOB 1S

v_cl CLOB;

v_tx VARCHAR2(32767);

v_cur SYS_ REFCURSOR; Issue #1:
BEGIN no cache

dbms_lob.createTemporary(v_cl,false,dbms lob.call);

OPEN v_cur FOR *SELECT "]]|
dbms_assert.simple_sgl_name(i_column_tx)||" field_tx"||
" FROM "] |]dbms _assert.simple sgl name(i_table tx);

LOOP

_ Issue #2:
FETCH v_cur into v_tx; no buffer

EXIT WHEN v_cur%notfound;
dbms_lob.writeAppend(v_cl,length(v_tx)+1,v_ ||| ");
END LOOP;
CLOSE v_cur;
RETURN v_cl;
END;

) e : 40 of 42
<Show fixed code if time permits>

). Summary

¢ End users only care that their requests come back quickly
... and not about CPU/Memory/IO utilization

¢ Yes, sometimes it IS the database ®
> ... but 90% of time it isn’t ©

¢ PL/SQL Hierarchical profiler lets you see the system from
the end-user angle and find real performance issues

> ...1.e. request-driven (with drill-down option)

¢ PL/SQL Hierarchical profiler is constantly improving
> .. 1.e. don’t forget to read “New Features” guide!

41 of 42

S

p~{ Contact Information

¢ Michael Rosenblum — mrosenblum@dulcian.com
¢ Dulcian, Inc. website - www.dulcian.com
+ Blog: wonderingmisha.blogspot.com

Expert

PL/SQL Eractices

Oracle PL/SOL
A Riida Performance Tuning Tips Ay
P & Techniques
[/ B ik i I

- -

Wil RS e APESS

42 of 42

