
1 of 42

Unduly Forgotten
Performance Tuning Hero:

PL/SQL Hierarchical Profiler

Michael Rosenblum
www.dulcian.com

2 of 42

Who Am I? – “Misha”
uOracle ACE
uCo-author of 3 books
ØPL/SQL for Dummies
ØExpert PL/SQL Practices
ØOracle PL/SQL Performance Tuning Tips & Techniques

uKnown for:
ØSQL and PL/SQL tuning
ØComplex functionality
§ Code generators
§ Repository-based development

3 of 42

Yet another performance
presentation???

uNO!
uBecause:
Ø I will NOT talk about bind variables
§ … more than a few [dozen] timesJ

Ø I will NOT mention extra paid options/products.
§ Well…I am a [database] doctor, not a [salesman?] (c) Star Trek

Ø I will NOT be buzzword-compliant
§ … so you can be [mostly] CLOUD- and EXADATA-free.

4 of 42

Tuning (CFO Level)

uMeans:
ØEnsuring that available resources are used in the most efficient

way:
§ No wasted resources
§ No under-utilized resources

u Impact:
ØMakes CFO happy when they look at hardware costs
§ …especially in the Cloud [for more, see my session #1454]

5 of 42

Tuning (Practical Level)

uMeans:

ØMAKING END-USERS HAPPY!

6 of 42

Reality Check

uEnd-users
ØDON’T CARE ABOUT:
§ CPU utilization/disk workload/etc.
§ Being buzzword-compliant by using the coolest technology stack

ØDO CARE ABOUT:
§ Being able to run their business

§ … i.e. monthly report should not take two months to prepare!
§ Time wasted looking at an hourglass on the screen

§ … although the notion of “wasted time” can be managed by using various
psychological tricks (managing expectations!).

7 of 42

So?

uThis talk is all about end-user requests…
3. Application

Server
2. Send data from

Client to app server

5. Database

6. Return Data from
database to app server

1. Client

4. Send data from
app server to database

7. Data in
Application Server

8. Return data from
app server to client

9. Data in
client

… when time is lost here

8 of 42

Let’s assume….

uYou’ve proven that IT IS a database problem
Ø ... and not network traffic/slow client/etc.
Ø… and not the number of round trips from the application server!

uYou can modify database-related code
ØBest case: You know how to use a “thick database approach”

§ … i.e. you have high level PL/SQL APIs (that call various SQL queries)
§ …and these APIs are called by everybody else (UI/reports/BI/etc.)

ØWorst case: If needed, you can add diagnostic PL/SQL calls around
SQL.

9 of 42

A Perfect World

Database

API response

API call

PROCEDURE p_DoSomething IS
BEGIN

p_doSomethingElse1;
sql_1;
p_doSomethingElse2;
sql_2;
…

END;

10 of 42

Less Than Perfect World

Database

SQL
or

PL/SQL

Application Server
void doSomething
{

…
doSomethingElse;
…

}

11 of 42

THE Problem
uDatabase is spending too much time doing something:
ØPerfect Case [one SQL statement that does not contain any

user-defined functions]
§ Many monitoring mechanisms
§ Many ways to adjust
§ Lots of coverage

ØReal case [combination of SQL and PL/SQL]
§ Hierarchical in its natureè something is calling something that is

calling something else
§ Cannot be represented as a sequence of simple cases!

12 of 42

The Hero

PL/SQL Hierarchical Profiler

13 of 42

What can it do for you?

uPL/SQL Hierarchical Profiler:
ØGathers hierarchical statistics of all calls (both SQL and

PL/SQL) for the duration of the monitoring
§ … into a portable trace file

ØHas powerful aggregation utilities
§ … both within the database and using a command-line interface

ØAvailable since Oracle 11.1 [replaced PL/SQL Profiler]
§ … and constantly improved/adjusted even in 18c

14 of 42

Introductory Case

uBackground:
ØYou have multiple PL/SQL program units calling each other that

have SQL statements within them.
uProblem:
ØYou need to know where time is wasted and where it would be

best to spend time on tuning.

15 of 42

Intro (1)
SQL> CREATE DIRECTORY IO AS 'C:\IO';

SQL> exec dbms_hprof.start_profiling
(location=>'IO',filename=>'HProf.txt');

SQL> DECLARE
2 PROCEDURE p_doSomething (pi_empno NUMBER) IS
3 BEGIN
4 dbms_lock.sleep(0.1);
5 END;
6 PROCEDURE p_main IS
7 BEGIN
8 dbms_lock.sleep(0.5);
9 FOR c IN (SELECT * FROM emp) LOOP
10 p_doSomething(c.empno);
11 END LOOP;
12 END;
13 BEGIN
14 p_main();
15 END;
16 /
SQL> exec dbms_hprof.stop_profiling;

Destination folder:
WRITE is enough

Spend time

16 of 42

Intro (2)
uRaw file (C:\IO\HProf.txt) is not very readable…

P#V PLSHPROF Internal Version 1.0
P#! PL/SQL Timer Started
P#C PLSQL."".""."__plsql_vm"
P#X 8
P#C PLSQL."".""."__anonymous_block"
P#X 6
P#C PLSQL."".""."__anonymous_block.P_MAIN"#980980e97e42f8ec #6
P#X 63
P#C PLSQL."SYS"."DBMS_LOCK"::9."__pkg_init"
P#X 7
P#R
P#X 119
P#C PLSQL."SYS"."DBMS_LOCK"::11."SLEEP"#e17d780a3c3eae3d #197
P#X 500373
P#R
P#X 586
P#C SQL."".""."__sql_fetch_line9" #9."4ay6mhcbhvbf2"
P#! SELECT * FROM SCOTT.EMP
P#X 3791
P#R
P#X 17
<<… and so on …>>

Call

Elapsed time
between events

Return
from

sub-program

17 of 42

Intro (3)

u… but you can and make it readable via the command-line utility:

C:\Utl_File\IO>plshprof -output hprof_intro HProf.txt
PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.2.0.1.0

- 64bit Production
[8 symbols processed]
[Report written to 'hprof_intro.html']

<Show files>

18 of 42

Intro Findings
uThe results are:
ØAll of the time is spent in DBMS_LOCK.SLEEP
§ …There are no descendants!

ØWhen we drill down, the SLEEP procedure was called from
multiple parent modules!
§ This is important because, in one case, time spent is 0.1 per call and in

the other is 0.5 per call.
ØOracle 12.2+è SQL ID and first 50 characters of SQL text
§ Very nice, especially in the case of Dynamic SQL

uMany sorting/reporting options!

19 of 42

Intro (4)
u… and also you can analyze the trace file via PL/SQL APIs

Ø Pro: easier to link with SQL statistics
Ø Contra: need extra READ privilege on the directory + need to create tables

beforehand
DECLARE
runid NUMBER;

BEGIN
runid := DBMS_HPROF.analyze('IO','HProf.txt');
DBMS_OUTPUT.PUT_LINE('runid = ' || runid);

END;
/

DBMSHP_RUNS
Run_ID PK
…

DBMSHP_Parent_Child_Info
Run_ID PK
ParentSymID FK
ChildSymID FK
…

DBMSHP_Function_Info
SymbolID PK
Run_ID FK
Module
Type
Function
…

20 of 42

Intro (5)
u… btw, ANALYZE has some nice options:

Ø Trace only specific entries
runid := DBMS_HPROF.analyze('IO','HProf.txt',

trace=> '"SCOTT"."F_CHANGE_TX"');

Ø Trace up to N occurrences
runid := DBMS_HPROF.analyze('IO','HProf.txt',

collect => 20,
trace=> '"SCOTT"."F_CHANGE_TX"');

Ø Trace starting from N-th occurrence
runid := DBMS_HPROF.analyze('IO','HProf.txt',

skip =>1,
trace=> '"SCOTT"."F_CHANGE_TX"');

21 of 42

True Story #1:
Typical Hierarchical Profiler Use

22 of 42

Typical Situation

uHelp-desk client’s performance complaints:
ØDeveloper checked 10046 trace and couldn’t find anything

suspicious
Ø I noticed that the core query contains a user-defined PL/SQL

function.
uAction:
ØWrap suspicious call in HProf start/stop in TEST instance (with

the same volume of data)

23 of 42

Suspect
SQL> exec dbms_hprof.start_profiling ('IO', 'HProf_Case1.txt');

SQL> declare

2 v_tx varchar2(32767);

3 begin

4 select listagg(owner_tx,',') within group (order by 1)

5 into v_tx

6 from (

7 select distinct scott.f_change_tx(owner) owner_tx

8 from scott.test_tab

9);

10 end;

11 /

SQL> exec dbms_hprof.stop_profiling;

1. Only 26 owners!
2. Function is doing

basic formatting

24 of 42

Profile

50k calls?!

Here is my time!
<Show files>

25 of 42

Findings
uProblem:
ØTime is wasted on very cheap function which is fired lots and lots

of times
Ø… because the original developer “guessed” at the query behavior
Ø… i.e. he knew function was doing basic formatting, so the output

would also be distinct
Ø… but forgot to tell that to the CBOè GIGO!

uSolution:
ØRewrite query in a way that helps the CBO
Ø… and remind all developers:

§ The number of function calls in SQL will surprise you if you don’t measure
them.

26 of 42

Fix
SQL> exec dbms_hprof.start_profiling ('IO', 'HProf_Case1_fix.txt');

SQL> declare
2 v_tx varchar2(32767);
3 begin
4 select listagg(owner_tx,',') within group (order by 1)
5 into v_tx
6 from (
7 select scott.f_change_tx(owner) owner_tx
8 from (select distinct owner
9 from scott.test_tab)
10);
11 end;
12 /

SQL> exec dbms_hprof.stop_profiling

Filter first!

<Show files>

27 of 42

Updated Profile

28 times faster!
26 calls

28 of 42

Extra Test:
SQL in Java and SQL*Plus

29 of 42

Running directly from Java?

uGood news:
Ø It works!
ØYou can run multiple statements between START and STOP

uBad news:
ØNo SQL IDs if they run directly (at least we couldn’t get it)è

confused statisticsL
§ Environment: JDeveloper 11g

30 of 42

Java Sample
String sql =

"begin dbms_hprof.start_profiling (location=>'IO',filename=>'Case1a.txt'); end;";

CallableStatement stmt = conn.prepareCall(sql);

stmt.execute();

PreparedStatement stmt2 =

conn.prepareStatement("select listagg(owner_tx,',') within group (order by 1) result \n" +

"from (select distinct scott.f_change_tx(owner) owner_tx\n" +

" from scott.test_tab) A ");

stmt2.execute();

stmt2 = conn.prepareStatement("select listagg(owner_tx,',') within group (order by 1) \n" +

"from (select distinct scott.f_change_tx(owner) owner_tx\n" +

" from scott.test_tab) B ");

stmt2.execute();

sql = "begin dbms_hprof.stop_profiling; end;";
stmt = conn.prepareCall(sql);

stmt.execute();

Difference!

<Show files>

31 of 42

Impact - Java

100k Calls

No SQL IDs

<Show files>

32 of 42

Running directly from SQL*Plus?

uBad news: the same problem with multiple statements:
SQL> exec dbms_hprof.start_profiling
2 (location=>'IO',filename=>'Case1b_SQLPlus.txt');

SQL> select listagg(owner_tx,',') within group (order by 1)

2 from (select distinct scott.f_change_tx(owner) owner_tx

4 from scott.test_tab a);

...

SQL> select listagg(owner_tx,',') within group (order by 1)

2 from (select distinct scott.f_change_tx(owner) owner_tx

4 from scott.test_tab b);

...

SQL> exec dbms_hprof.stop_profiling;

33 of 42

Impact – SQL*Plus

100k Calls

No SQL IDs

<Show files>

34 of 42

True Story #2:
Unexpected Usage

35 of 42

Background

uThird-party module code is slow
ØFunctionality: Take some tables and columns /return formatted

CLOB
ØThe code is wrapped
ØOriginal developers don’t want to accept the blame.

uAction:
ØGather as many statistics about the module as you can
ØWrap suspicious call in HProf start/stop

36 of 42

Statistics (1)
SQL> exec runstats_pkg.rs_start;

SQL> DECLARE

2 v_CL CLOB;

3 BEGIN

4 v_cl :=wrapped_pkg.f_getdata_cl('ename','emp');

5 dbms_output.put_line('length:'||LENGTH(v_cl));

6 END;

7 /

length:84

SQL> exec runstats_pkg.rs_middle;

SQL> DECLARE

2 v_CL CLOB;

3 BEGIN

4 v_cl :=wrapped_pkg.f_getdata_cl('object_name','test_tab');

5 dbms_output.put_line('length:'||LENGTH(v_cl));

6 END;

7 /

length:1247887

50000 rows

Wrapped module

14 rows

37 of 42

Statistics (2)
SQL> exec runstats_pkg.rs_stop;

Run1 ran in 0 cpu hsecs

Run2 ran in 3195 cpu hsecs

run 1 ran in 0% of the time

Name Run1 Run2 Diff

...

STAT...physical reads direct (lob) 13 49,991 49,978

STAT...physical reads direct temporary tablespace 13 49,991 49,978

STAT...lob writes 14 50,000 49,986

STAT...physical writes direct temporary tablespace 14 50,145 50,131

STAT...physical writes direct (lob) 14 50,145 50,131

Direct Temp I/O?!?!

38 of 42

Profile for the Slow Case

<Show files>

Explicit
“create temp”

50k calls

39 of 42

Analysis

uProblem #1: Direct IO for all temporary LOB operations
ØCould happen only if LOB variable is initiated as NOCACHE

via DBMS_LOB.createTemporary
uProblem #2: IO operation for every row in conjunction

with fetch for every row
ØCould happen only if DBMS_LOB.writeAppend is called within

the loop

40 of 42

Unwrapped code (FYI)
FUNCTION f_getData_cl(i_column_tx VARCHAR2, i_table_tx VARCHAR2) RETURN CLOB IS

v_cl CLOB;

v_tx VARCHAR2(32767);

v_cur SYS_REFCURSOR;

BEGIN

dbms_lob.createTemporary(v_cl,false,dbms_lob.call);
OPEN v_cur FOR 'SELECT '||

dbms_assert.simple_sql_name(i_column_tx)||' field_tx'||

' FROM '||dbms_assert.simple_sql_name(i_table_tx);

LOOP
FETCH v_cur into v_tx;

EXIT WHEN v_cur%notfound;

dbms_lob.writeAppend(v_cl,length(v_tx)+1,v_tx||'|');
END LOOP;
CLOSE v_cur;

RETURN v_cl;

END;

Issue #1:
no cache

Issue #2:
no buffer

<Show fixed code if time permits>

41 of 42

Summary
uEnd users only care that their requests come back quickly

… and not about CPU/Memory/IO utilization
uYes, sometimes it IS the database L
Ø… but 90% of time it isn’tJ

uPL/SQL Hierarchical profiler lets you see the system from
the end-user angle and find real performance issues
Ø…i.e. request-driven (with drill-down option)

uPL/SQL Hierarchical profiler is constantly improving
Ø .. i.e. don’t forget to read “New Features” guide!

42 of 42

Contact Information
uMichael Rosenblum – mrosenblum@dulcian.com
u Dulcian, Inc. website - www.dulcian.com
u Blog: wonderingmisha.blogspot.com

