
1 of 65

Server-Side Development
for the Cloud

Michael Rosenblum
www.dulcian.com

2 of 65

Who Am I? – “Misha”
uOracle ACE
uCo-author of 3 books

Ø PL/SQL for Dummies
Ø Expert PL/SQL Practices
Ø Oracle PL/SQL Performance Tuning Tips & Techniques

uKnown for:
Ø SQL and PL/SQL tuning
Ø Complex functionality

§ Code generators
§ Repository-based development

3 of 65

Yet another cloud presentation?!

uNO, because:
ØI have been building actual systems for the last two decades.
ØI have hosted systems both in the cloud and on-premises.

uAlso, beware:
ØI don’t work for Oracle/Amazon/IBM/etc.

§ …so, I WILL use the right of Free Speech, guaranteed by the FIRST
amendment J

4 of 65

Parts of the Equation

uCloud
Ø… i.e. what is the environment?

uServer-side
Ø… i.e. what is the architecture?

uDevelopment
Ø… i.e. what is the implementation?

5 of 65

I. State of the Cloud

6 of 65

It’s Growing!

7 of 65

It’s about infrastructure

8 of 65

It’s … well… Amazon

9 of 65

Observations

uIaaS is the fastest growing segment because…
Ø… companies don’t want to lose control over their

environments
Ø… it is the most flexible one

uPaaS (including DBaaS) is growing, but not as fast as
promised
Ø… because it is really hard to do everything properly
Ø ... so, providers have to add restrictions.

10 of 65

II. State of Server-Side Development

11 of 65

Why Server-Side?

uSQL is the most efficient method of data manipulation.
uPL/SQL is the most efficient way of encapsulating SQL

into procedural logic.
uRoundtrips between database and middle-tier are still the

most wide-spread performance killers (after missing bind
variables J)

u“Thick Database” (aka “smart database”) just WORKS!

12 of 65

Data is growing!

13 of 65

Databases are the same

14 of 65

Problem detected!

uGrowth of data + old technologies è
Ømeans more pressure on the same solution patterns
Ø… which means critical resources become limited faster
Ø… which means design mistakes become obvious
Ø… which means looking for scapegoats quick-fixes L

15 of 65

III. Problem vs. Opportunity

16 of 65

Cloud?!

uResource utilization is easily monitored by providers.
uHardware resources are no longer static.
uExpense model is “pay-per-use.”

17 of 65

Cloud!!!

uResource elasticity works both ways!
ØSolving problems by adding resources è Spending money
ØSolving problems by optimizing systems è Saving money

18 of 65

Eureka!

uTotal quality of the code base (including tuning efforts)
has a DIRECT cost impact!

19 of 65

Impact
uPolitical:

Ø “Good vs bad” can be easily quantified è at least some objectivity
in decision-making

Ø Good architecture pays off è good architects are being nurtured
and supported by the management

Ø Performance tuning is back in style è quality control
Ø Solutions usually cross boundaries è DBAs and developers are

forced to work together
uTechnical:

Ø Developers are constantly reminded about resource utilization è
less sloppy code

20 of 65

IV. Top-Down View

21 of 65

Core Elements

u1. Detect problem areas è Code instrumentation
u2. Pinpoint exact location è Profiling

22 of 65

IV.1 - Logging

23 of 65

System Logging
uLevels of information:

Ø Core info
§ Process
§ Session

Ø Granular info
§ Client
§ Module
§ Action

uWhy bother?
Ø StateLESS implementation spawns logical session between

multiple physical sessions.

24 of 65

Setting Granular Info (1)
-- Client Stuff
Begin
-- set it to anything you want to describe the session.
-- Otherwise useless
DBMS_APPLICATION_INFO.SET_CLIENT_INFO
('This is my test-run');

-- Key setting for debugging!
-- This ID is traceable.
DBMS_SESSION.SET_IDENTIFIER ('misha01');

end;
/

-- Visibility:
select sid, client_info, client_identifier
from v$session

25 of 65

Setting Granular Info (2)
-- Client Stuff
Begin
-- Additional info: module and action
DBMS_APPLICATION_INFO.SET_MODULE

(module_name=>'HR',
action_name=>'SALARY_MAINT');

end;
/

-- Visibility:
select sid, module, action
from v$session

26 of 65

Application Logging
uAdvantages:

ØCustomized information when needed
uDisadvantages:

ØRequires discipline of the whole development group
uKey technologies

ØAutonomous transactions
ØConditional compilation

27 of 65

Indestructible Log
create or replace package log_pkg
is

procedure p_log (i_tx varchar2);
procedure p_log (i_cl CLOB);

end;
/
create or replace package body log_pkg is

procedure p_log (i_tx varchar2) is
pragma autonomous_transaction;

begin
insert into t_log (id_nr, timestamp_dt, log_tx, log_cl)
values (log_seq.nextval, systimestamp,

case when length(i_tx)<=4000 then i_tx else null end,
case when length(i_tx)>4000 then i_tx else null end);

commit;
end;

procedure p_log (i_cl CLOB) is
pragma autonomous_transaction;

begin
insert into t_log (id_nr, timestamp_dt,log_cl)
values (log_seq.nextval, systimestamp,i_cl);
commit;

end;
end;
/

28 of 65

Conditional Compilation
create or replace procedure p_conditional
is

v_tx varchar2(256);
begin
$if $$DebugTF $then
log_pkg.p_log

('Before query:'||dbms_utility.format_call_stack);
$end

select ename
into v_tx
from scott.emp;

$if $$DebugTF $then
log_pkg.p_log ('After query');

$end
exception
when others then

log_pkg.p_log(dbms_utility.format_error_stack);
log_pkg.p_log

(dbms_utility.format_error_backtrace);
raise;

end;

29 of 65

IV.2 - Profiling

30 of 65

PL/SQL Hierarchical Profiler

uGathers hierarchical statistics of all calls (both SQL and
PL/SQL) for the duration of the monitoring
Ø… into a portable trace file

uHas powerful aggregation utilities
Ø… both within the database and using a command-line interface

uAvailable since Oracle 11.1 [replaced PL/SQL Profiler]
Ø… and constantly improved even in 18c

31 of 65

Intro (1)
SQL> CREATE DIRECTORY IO AS 'C:\IO';
SQL> exec dbms_hprof.start_profiling

(location=>'IO',filename=>'HProf.txt');

SQL> DECLARE
2 PROCEDURE p_doSomething (pi_empno NUMBER) IS
3 BEGIN
4 dbms_lock.sleep(0.1);
5 END;
6 PROCEDURE p_main IS
7 BEGIN
8 dbms_lock.sleep(0.5);
9 FOR c IN (SELECT * FROM emp) LOOP
10 p_doSomething(c.empno);
11 END LOOP;
12 END;
13 BEGIN
14 p_main();
15 END;
16 /
SQL> exec dbms_hprof.stop_profiling;

Destination folder:
WRITE is enough

Spend time

32 of 65

Intro (2)
uRaw file (C:\IO\HProf.txt) is not very readable…

P#V PLSHPROF Internal Version 1.0
P#! PL/SQL Timer Started
P#C PLSQL."".""."__plsql_vm"
P#X 8
P#C PLSQL."".""."__anonymous_block"
P#X 6
P#C PLSQL."".""."__anonymous_block.P_MAIN"#980980e97e42f8ec #6
P#X 63
P#C PLSQL."SYS"."DBMS_LOCK"::9."__pkg_init"
P#X 7
P#R
P#X 119
P#C PLSQL."SYS"."DBMS_LOCK"::11."SLEEP"#e17d780a3c3eae3d #197
P#X 500373
P#R
P#X 586
P#C SQL."".""."__sql_fetch_line9" #9."4ay6mhcbhvbf2"
P#! SELECT * FROM SCOTT.EMP
P#X 3791
P#R
P#X 17
<<… and so on …>>

Call

Elapsed time
between events

Return
from

sub-program

33 of 65

Intro (3)

u… but you can and make it readable via the command-line utility:

C:\Utl_File\IO>plshprof -output hprof_intro HProf.txt
PLSHPROF: Oracle Database 12c Enterprise Edition Release 12.2.0.1.0

- 64bit Production
[8 symbols processed]
[Report written to 'hprof_intro.html']

<Show files>

34 of 65

V. Down to Earth

35 of 65

It’s all about CPU now!

uShift to cloud è going from I/O-bound to CPU-bound:
ØOn-premises servers usually had CPUs over-allocated:

§ Storage is upgradable and scalable / CPU is not
§ Servers have to support the highest workload (Black Friday!)

ØCloud storage usually means SSD
§ low latency è much faster I/O è no longer a bottleneck

36 of 65

Ways to Lower CPU Workload

u1. Avoid context switches
u2. Don’t reinvent the wheel
u3. Don‘t do things multiple times
u4. Work in SETs

37 of 65

V.1 - Avoid Context Switches

38 of 65

Ways to Solve the Problem

uDecrease frequency:
ØHelp CBO to fire PL/SQL functions in SQL less often

uDecrease the cost:
ØPRAGMA UDF
ØFunctions in WITH clause

39 of 65

Counting Function Calls
uOutput:
SQL> SELECT empno, ename, f_change_nr(empno) change_nr
2 FROM emp
3 WHERE f_change_nr(empno) IS NOT NULL
4 AND deptno = 20;

...
5 rows selected.
SQL> exec counter_pkg.p_check;
Fired:10

uExplanation:
Ø CBO orders predicates to decrease the total cost

§ DEPNO=20 is applied first to get 5 rows back
§ CBO needs correct info (statistics, indexes, constraints etc.) to make that

decision
Ø The same functions in SELECT and WHERE clauses are being fired

independently.

Twice the number
of returned rows

40 of 65

PRAGMA UDF (1)
uMeaning:

ØPL/SQL function is compiled in the way that is optimized for
SQL usage (different memory management).

uExample:
CREATE FUNCTION f_change_udf_nr (i_nr NUMBER)
RETURN NUMBER IS

PRAGMA UDF;
BEGIN

counter_pkg.v_nr:=counter_pkg.v_nr+1;
RETURN i_nr+1;

END;

41 of 65

PRAGMA UDF (2)
uMuch faster in SQL:
SQL> SELECT MAX(f_change_nr(object_id)) FROM TEST_TAB;
MAX(F_CHANGE_NR(OBJECT_ID))

51485
Elapsed: 00:00:00.48

SQL> SELECT MAX(f_change_udf_nr(object_id)) FROM TEST_TAB;
MAX(F_CHANGE_UDF_NR(OBJECT_ID))

51485
Elapsed: 00:00:00.06

42 of 65

Functions in WITH Clause
uMeaning:

Ø Functions with the visibility scope of just one SQL query
Ø Compilation is tightly linked with SQL

SQL> WITH FUNCTION f_changeWith_nr (i_nr number)
2 RETURN NUMBER IS
3 BEGIN
4 RETURN i_nr+1;
5 END;
6 SELECT max(f_changeWith_nr(object_id))
7 FROM test_tab
8 /

MAX(F_CHANGEWITH_NR(OBJECT_ID))

51485
Elapsed: 00:00:00.07

Comparable to
PRAGMA UDF timing

43 of 65

V.2 - Don’t reinvent the wheel

44 of 65

These features are FREE!!!

uJust a reminder about:
ØAnalytic functions (RANK, LEAD, LAG…)
ØPivot/Unpivot
ØMODEL
ØJSON and XML support
ØEtc.…

45 of 65

V.3 - Don’t do things multiple times

46 of 65

Caching Techniques

uQuery-level:
ØScalar sub-query caching
ØDETERMINISTIC clause

uDatabase-level
ØPL/SQL function Result Cache

47 of 65

Side Effect of SELECT from DUAL
u Definitions:

Ø Scalar sub-query returns a single column of a single row (or from the empty rowset)
Ø Scalar sub-query caching is an Oracle internal mechanism to preserve results of such

queries while processing more complex ones.
§ Implemented as in-memory hash table
§ Cache size is defined by “_query_execution_cache_max_size” [65536 bytes by default]
§ Cache is preserved for the duration of the query.
§ Last value is preserved even if hash table is full.

u Example:
SQL> SELECT empno, f_change_tx(job) FROM emp;
SQL> exec counter_pkg.p_check;
Fired:14
SQL> SELECT empno, (SELECT f_change_tx(job) FROM dual)
2 FROM emp;
SQL> exec counter_pkg.p_check;
Fired:5

Only 5 distinct jobs

48 of 65

Same OUT for the same IN
u DETERMINISTIC clause:

Ø If function does the same thing for exactly the same IN, it can be defined as DETERMINISTIC.
Ø Oracle may reuse already calculated values via in-memory hash tables [same as for scalar sub-query

and using the same parameter/limit]
Ø Oracle does not check to see whether the function is deterministic or not!

u Example:
CREATE FUNCTION f_change_det_tx (i_tx VARCHAR2) RETURN VARCHAR2
DETERMINISTIC IS
BEGIN

counter_pkg.v_nr:=counter_pkg.v_nr+1;
RETURN lower(i_tx);

END;

SQL> select empno, f_change_tx(job) from emp;
SQL> exec counter_pkg.p_check;
Fired:14
SQL> select empno, f_change_det_tx(job) from emp;
SQL> exec counter_pkg.p_check;
Fired:5

Only 5 distinct jobs

49 of 65

PL/SQL Result Cache
uPL/SQL Function Result Cache

Ø Database-level cache (cross-session)
Ø Stored in SGA
Ø Automatic cache monitoring and invalidation (Oracle 11g R2+)

uExample:
create function f_getdept_dsp (i_deptno number)
return varchar2 result_cache is

v_out_tx varchar2(256);
begin

if i_deptno is null then return null; end if;
select initcap(dname) into v_out_tx
from dept where deptno=i_deptno;
counter_pkg.v_nr:=counter_pkg.v_nr+1;
return v_out_tx;

end;

50 of 65

Result Cache Basics
SQL> SELECT empno, f_getDept_dsp(deptno) dept_dsp
2 FROM emp;

EMPNO DEPT_DSP
----------- ------------------------

7369 Research
...

14 rows selected.
SQL> exec counter_pkg.p_check;
Fired:3

SQL> SELECT empno, f_getDept_dsp(deptno) dept_dsp
2 FROM emp;
EMPNO DEPT_DSP

---------- ----------
7369 Research
...

14 rows selected.
SQL> exec counter_pkg.p_check;
Fired:0

No calls at all!

51 of 65

Result Cache Stats
SQL> SELECT * FROM v$result_cache_statistics;

ID NAME VALUE
----- ------------------------------ ----------

1 Block Size (Bytes) 1024
2 Block Count Maximum 15360
3 Block Count Current 32
4 Result Size Maximum (Blocks) 768
5 Create Count Success 3
6 Create Count Failure 0
7 Find Count 25
8 Invalidation Count 0
9 Delete Count Invalid 0
10 Delete Count Valid 0
11 Hash Chain Length 1
12 Find Copy Count 25

3 distinct INs

52 of 65

V.4 - Work in SETs

53 of 65

Object Types!

uMust use and understand object types
Ø… and be aware of memory impact

uRead in SETs/write in SETs
ØBULK COLLECT
ØFORALL

54 of 65

Bulk Operations Use-Case

uTask:
ØData needs to be retrieved from a remote location via DBLink.
ØEach row must be processed locally.
ØSource table contains 50,000 rows.

uProblem:
ØAnalyze different ways of achieving the goal.
ØCreate best practices.

55 of 65

RowByRow
SQL> connect scott/TIGER@localDB;
sql> declare
2 v_nr number;
3 begin
4 for c in (select * from test_tab@remotedb) loop
5 v_nr :=c.object_id;
6 end loop;
7 end;
8 /

Elapsed: 00:00:00.77

SQL> select name, value from stats where name in
2 ('STAT...session pga memory max',
3 'STAT...SQL*Net roundtrips to/from dblink');

NAME VALUE
--- -------
STAT...session pga memory max 2609504
STAT...SQL*Net roundtrips to/from dblink 510

56 of 65

BULK LIMIT
sql> declare
2 type collection_tt is table of
3 test_tab@remotedb%rowtype;
4 v_tt collection_tt;
5 v_nr number;
6 v_cur sys_refcursor;
7 v_limit_nr binary_integer:=5000;
8 begin
9 open v_cur for select * from test_tab@remotedb;
10 loop
11 fetch v_cur bulk collect into v_tt
12 limit v_limit_nr;
13 exit when v_tt.count()=0;
14 for i in v_tt.first..v_tt.last loop
15 v_nr:=v_tt(i).object_id;
16 end loop;
17 exit when v_tt.count<v_limit_nr;
18 end loop;
19 close v_cur;
20 end;
21 /

Limit can variable

57 of 65

Analysis
u Results:

u Summary:
Ø With the increase of bulk limit processing, time stops dropping because memory

management becomes costly!
Ø This point is different for different hardware/software

u Conclusion:
Ø Run your own tests and find the most efficient bulk limit

Limit size Time Max PGA Roundtrips

100 0.78 2’543’968 510
250 0.58 2’675’040 210
500 0.49 2’806’112 110
1000 0.44 3’133’792 60

5000 0.40 4’247’904 20
10000 0.41 7’590’240 15
20000 0.43 14’340’448 12

58 of 65

FORALL
u FORALL command

Ø The idea:
§ Apply the same action for all elements in the collection.
§ Have only one context switch between SQL and PL/SQL

Ø Risks:
§ Special care is required if only some actions from the set succeeded

declare
type number_nt is table of NUMBER;
v_deptNo_nt number_nt:=number_nt(10,20);

begin
forall i in v_deptNo_nt.first()..v_deptNo_nt.last()
update emp
set sal=sal+10

where deptNo=v_deptNo_nt(i);
end;

59 of 65

Summary

uCloud is here to stay
Ø… so, you have to build your systems the right way

uWell-written code in a cloud-based system SAVES LOTS
OF MONEY
Ø .. so, developers are now visible to CFO

uOracle provides enough tools to create well-written code J
Ø… so, you have to learn new tricks - sorry J

60 of 65

Contact Information
u Michael Rosenblum – mrosenblum@dulcian.com
u Dulcian, Inc. website - www.dulcian.com
u Blog: wonderingmisha.blogspot.com

