Grabbing Live Wires: Plotting Our EV Future with APEX, GeoSpatial, and ML Analytics

March 28, 2023

Jim Czuprynski Zero Defect Computing, Inc.

Who Am I, and What Am I Doing Here?

500+ technical experts helping peers globally

The Oracle ACE Program recognizes and rewards community members for their technical and community contributions to the Oracle community

3 membership tiers

Nominate yourself or someone you know: ace.oracle.com/nominate

For more details on Oracle ACE Program: <u>ace.oracle.com</u>

Connect: eaceprogram_ww@oracle.com

Facebook.com/OracleACEs

@oracleace

BEYOND TECH SKILLS

Liron Amitzi

Jim Czuprynski

The podcast that talks about everything tech – except tech.TM

https://www.beyondtechskills.com

EVs and Electrical Infrastructure: What a Difference One Year Makes!

Photo by Jean-Lui Picton @ Lincolach

Overwhelming US Federal & state support for transitioning from fossil fuels to alternative energy resources

EV adoption rates soaring worldwide – USA sales doubled to 600K in 2021

Generous incentives to adopt solar energy for private homes

Power walls are replacing gas / LNG / propanepowered home generators

oto by Manny Recerca @ Unsplasi

NuScale's Idaho facility is the firstever approved SMIR in the USA

2022 Inflation Reduction Act (IRA): Re-Electrifying the USA, Equitably

The Justice40 (J40) initiative that's part of the 2022 IRA encourages each US state to place EV chargers equitably so that their 40% most underserved populations will have access to these resources

- EV prices **continue to decrease** as US and foreign automakers shift production to **purely EVs** in coming decades
- Companies and organizations are also shifting their lastmile delivery vehicles to BEVs (e.g. Amazon, US Postal Service)
- Building this new energy infrastructure offers excellent employment opportunities for poorer communities

EV Chargers: Terminology and Capacity

Term / Acronym	Charging Voltage	Average Installation Cost Per Port	Description	
Level 1 Charger	120V	\$400	Delivers slow "trickle" charge (3–5 miles of range per hour); OK for most PHEVs , but not BEVs	
Level 2 Charger	208V – 240V	\$850	Delivers <i>moderate</i> charging (12–80 miles of range per hour); preferred by most BEV owners for overnight home charging	
Level 3 Charger	400V – 900V	\$22,500	Delivers <i>extremely fast</i> charging (3 – 20 miles of range per minute); also known as DC Fast Chargers (DCFCs) or SuperChargers	

Sources: <u>https://www.forbes.com/wheels/advice/ev-charging-levels/</u>

Considerations for Installing EV Charging Stations

Networking & Payment Collection

Source: https://www.chargedfuture.com/cost-to-install-ev-charging-stations/

WTFC 1.0: Focus on Placing Charging Stations Near Traffic Hotspots

WTFC 2.0: Shifting to the J40 Definition of Underserved

Oracle Spatial Studio: Sophisticated GIS Data Manipulation and Visualization

INDIAN

OCEAN

ASSPOR

ATLANTIC

OCEAN

Good News! Extensive Resources from US Department of Transportation (DOT)

Climate and Economic Justice Screening Tool

... including extremely detailed breakdowns of DAC factors across the entire US geography within census tracts

Evalara the man

Transportation Disadvantaged Census Tracts (Historically Disadvantaged Communities)

User Instructions: On the list to the right, select your state of interest. Use the +/- icons or mouse wheel to zoom into the map. Click and drag the map area to pan. Use the select tool on the left $\widehat{\mathbb{N}}$ to select US Census tracts within your area of interest. Census tracts with four or more Transportation Disadvantage indicators will be visible in orange. Single-click on a Census tract to view the tract number and Transportation Disadvantage categories. The end of the visible man layers. Use the home button $\widehat{\mathbb{N}}$ to return to the continental US extent

Translating ArcGIS Shapefiles To Oracle SDO_GEOMETRY Format

Got an ArcGIS Shapefile? No problem. You can still use Spatial Studio!

What Charging Points Are Already Active or Planned?

Private businesses in Wisconsin (and nationwide) are already planning to **build new** Level 3 charging stations or **expand their existing EV charging infrastructure**

Ideal locations would include places that people typically spend at least 15 – 20 minutes performing daily or weekly errands

CHARGING_POINTS captures locations of +1100 potential businesses gleaned from public sources, including pharmacies, grocery stores, gas stations, convenience centers, hotels, recreation areas, and parking structures

RE	ATE TABLE wtfc.cl	harging_points (
	cp_id	NUMBER $(8,0)$	NOT	NULL
	,cp_name	VARCHAR2(60)	NOT	NULL
	,cp_address	VARCHAR2(40)	NOT	NULL
	,cp_city	VARCHAR2(40)	NOT	NULL
	,cp_state_abbr	VARCHAR2(02)	NOT	NULL
	,cp_zip_code	CHAR(05)	NOT	NULL
	,cp_status	CHAR(03)	NOT	NULL
	,cp_bus_type	VARCHAR2(03)	NOT	NULL
	,cp_chg_type	VARCHAR2(04)	NOT	NULL
	,cp_chg_avail	VARCHAR2(04)	NOT	NULL
	,cp_potentiality	NUMBER(8,6));		

What Charging Points Are Already Active or Planned?

Private businesses in Wisconsin (and nationwide) are already planning to **build new** Level 3 charging stations or **expand their existing EV charging infrastructure**

Ideal locations would include places that people typically spend at least 15 – 20 minutes performing daily or weekly errands

CHARGING_POINTS captures locations of +1100 potential businesses gleaned from public sources, including pharmacies, grocery stores, gas stations, convenience centers, hotels, recreation areas, and parking structures

ID Name	🕸 Status	& Level	🕀 Bus Type
550001CVS Pharmacy	PLN	L3	RTL
550002 PickNSave	PLN	L3	RTL
550003 PickNSave	PLN	L3	RTL
550004 Walgreens Drugstore	PLN	L3	RTL
550005 Walgreens Drugstore	PLN	L3	RTL
550006 PickNSave	PLN	L3	RTL
550007 CVS Pharmacy	PLN	L3	RTL
550008 PickNSave	PLN	L3	RTL
550009 Walgreens Drugstore	PLN	L3	RTL
550010 NCG BRKFLD HILTON	ACT	L2	HTL
550011 KWIK TRIP	PLN	L3	GS
550012 KWIK TRIP	PLN	L3	GS
550013CVS Pharmacy	PLN	L3	RTL
550014 Washington House Inn - Tesla Destination	ACT	L2	HTL
550015 Walgreens Drugstore	PLN	L3	RTL
550016 Walgreens Drugstore	PLN	L3	RTL
550017 CVS Pharmacy	PLN	L3	RTL
550018 Walmart SuperCenter	PLN	L3	RTL
550019Walgreens Drugstore	PLN	L3	RTL
550020 PickNSave	PLN	L3	RTL

NYOUG

No Geolocation Attributes? No Problem.

Our **CHARGING_POINTS** table has GIS attributes, but needs **geocoding**

Plotting Simple Maps With Spatial Studio

Now that charging points are **geocoded**, let's see the results

APEX Native Map Regions: Customized GIS Data Handling Within Applications

Getting Dimensional: Extruded Polygon Map Layers (1)

↑ Application 99301 \ Page Designer				
Rendering Dynamic Actions Processing Page Shared Comp	o Layer			
Page 1310: Top Disadvantaged Areas	Ų Q Filter	,		
> Pre-Rendering	Identification	n		
 Components 	Name	Disadvantaged Areas		
 Content Body 	Name	Disadvantaged Aleas		
Charging Points Within Disadvantaged Areas	Layer Type	Extruded Polygons V		
~ Layers	🖂 Label	but specify		
Charging Points Add a	Label	Extruded		
Disadvantaged Areas		Polygons for the		
> Post-Rendering Layer		Layer Type		
	Sequence	50		

Getting Dimensional: Extruded Polygon Map Layers (2)

Getting Dimensional: Extruded Polygon Map Layers (3)

How Do We Best Satisfy the 40% Equity Provision for DACs?

Since there are 1,108 DACs in Wisconsin, 40% coverage equates to placing charging points close to 450 of the most disadvantaged DACs in the state

Capturing Charging Points Based On Specific Distance From DACs

40% Equity Provision: How Close Is Close Enough?

Can We Get to 100% Compliance?

Looking Deeper for Insights: Applying Machine Learning & Analytics

DAC Dataset: A Cornucopia of Details About Disadvantaged Communities

The DOT's **Disadvantaged Communities (DAC)** dataset contains **fine-grained analytics** at **census tract** levels:

- Well-documented **sources** for 30+ factors and ratings
- Includes expected data about location, area size, and population of the census tracts themselves
- Gathers transportation data (miles traveled to work, # of vehicles, fuel costs, even "walkability index") of each community
- Factors in education, health, age, poverty, and environmental pollution
- Calculates six different disadvantage indicators based on all these features

Analyzing DOT's DAC Dataset with ML Algorithms (1)

CREATE OR RE	PLACE VIEW wtfc.chargepoint_anomaly_research	
SELECT DA2.fips , DTL.tot_cp , DA2.sumdis	AS fips_code s AS total_charging_points AS dac_summary_score	Build a new view with more DAC disadvantaged ratings information
, DA2.total_ , DA2.avg_ar		
, DA2.mean_a , DA2.epl_nw , DA2.health , DA2.equity , DA2.envirc FROM	(SELECT DA.fips, COUNT(CP.cp_id) AS tot_cps FROM wtfc.charging_points CP ,wtfc.dot_disadvantage_layers DA	filtered by active charging points extremely close to or within FIPS census tracts
	WHERE SDO_NN(DA.geom, CP.gc_geometry, 'dist AND CP.cp_status = 'ACT'	cance=1 unit=meter', 1) = 'TRUE'
	GROUP BY DA.fips) DTL ,wtfc.dot_disadvantage_layers DA2 WHERE DTL.fips = DA2.fips;	

Analyzing DOT's DAC Dataset with ML Algorithms (2)

Analyzing DOT's DAC Dataset with ML Algorithms (3)

SELECT target_value , attribute_name , coefficient , reversed_coefficient FROM DM\$VLSVM_CHARGEPOINT_ANOMALIES WHERE attribute_name IN ('DAC_SUMMARY_SCORE' ,'AVG_ANNUAL_SALARY') ORDER BY attribute_name, target_value;

The results from the SVM Linear Coefficients view that the ML model automatically generated ...

TARGET_VALUE	0 COEFFICIENT	& REVERSED_COEFFICIENT
1 AVG_ANNUAL_SALARY	-0.00000004397143499298697	-0.000000000004070610575806766
2 AVG_ANNUAL_SALARY	0.00000029892719070193574	0.00000000027672878632720907
3 AVG_ANNUAL_SALARY	-0.0000013904988149028793	-0.00000000012872400417437322
4 AVG_ANNUAL_SALARY	-0.0000005235177203594453	-0.0000000004846411697633446
5 AVG_ANNUAL_SALARY	0.0000032774126926960883	0.00000000030340312455801825
6 AVG_ANNUAL_SALARY	0.000000221786364009858	0.00000000002053164557973253
7 AVG_ANNUAL_SALARY	0.00000010487376905440151	0.000000000009708581798743883
8 AVG_ANNUAL_SALARY	-0.9570826422616179	-0.00008860094573062231
9 AVG_ANNUAL_SALARY	-0.00018980970118433855	-0.00000017571438756886592
1 DAC_SUMMARY_SCORE	-0.00000017965939166483936	-0.00000016892942745651368
2 DAC_SUMMARY_SCORE	-0.000003285571956487463	-0.0000030893447001759384
3 DAC_SUMMARY_SCORE	-0.0000002573482035271862	-0.0000002419783584701853
4 DAC_SUMMARY_SCORE	-0.0000009654518672911035	-0.0000009077912914375445
5 DAC_SUMMARY_SCORE	0.0000004396422774643815	0.000004133851146300557
6 DAC_SUMMARY_SCORE	0.0000002892889226862701	0.0000002720114524826556
7 DAC_SUMMARY_SCORE	-0.0000014771499794223433	-0.0000013889287833988198
8 DAC_SUMMARY_SCORE	-0.4238955834280258	-0.39857887498266265
9 DAC_SUMMARY_SCORE	0.06694013440912581	0.06294220677698523

... reveal how accurately different attributes **predict the linearity of classifications** within the DAC dataset's collected statistics

Analyzing DOT's DAC Dataset with ML Algorithms (4)

Analyzing DOT's DAC Dataset with ML Algorithms (5)

The results from the Normalization and Missing Value Handling view that the ML model automatically generated ...

& ATTRIBUTE_NAME	NUMERIC_MISSING_VALUE	NORMALIZATION_SHIFT	NORMALIZATION_SCALE
AVG_ANNUAL_SALARY	35829.02867383513	-4007.444444444443	74224.4444444444
ENVIRONMENTAL_SCORE	29.662370382537993	6.267759781633336	48.54344818166666
EQUITY_SCORE	36.06913978494626	-10.20111111111111	102.011111111111112
HEALTH_SCORE	41.78236293548291	-6.308209174077778	88.83886707407778
MEAN_ANNUAL_TRAVEL_HOURS	85.58243727537632	26.52777777777782	105.5555555222222
NATL_WALKABILITY_INDEX	49.655566666666665	-10.50822222222223	107.1692222222223
TOTAL_CHARGING_POINTS	1.8100358422939067	0.111111111111111116	8.888888888888889
TOTAL_POPULATION	4717.612903225807	25.66666666666742	11063.3333333333334
TOTAL_WORKERS	2490.9928315412194	-333.8888888888888888	7318.888888888888

... offer insights into several rating components that the DOT used to compute the summary disadvantagedness score

Plans for Future R&D

Improve **mapping methods** to plot optimal charging points every 50 miles on major US Interstates and State highways

Analyze the **complete** DAC dataset vs. all **existing & active** charging points across the USA using **traditional** as well as **spatial** machine learning algorithms

Create ML model(s) projecting **optimal charging locations** within each Midwestern state based on **Wisconsin test cases**

Mapping + Geospatial Projects: Valuable Lessons Learned

Bountiful public data sources exist

- US Department of Transportation and US Census Bureau portals are excellent starting points
- For resources closer to home, check your state's DOT websites and portals
- Great for learning basics of GIS interpretation and manipulation
- Excellent bases for experimentation with Oracle Machine Learning algorithms & Analytics toolsets
- Most government agencies tend to use ArcGIS shapefiles, so you'll need to know how to convert them to SDO_GEOMETRY datatype

Use the right tool for the job!

- Oracle Spatial Studio is a great all-purpose, no-code solution for visualization and analyses
- If you need to build more complex mapping visualization applications with tighter control over what users can explore and visualize, consider **Oracle APEX** and its **Native Map Region**
- Both Spatial Studio and Oracle APEX use the same Spatial functionality ...
- ... so there's no wasted learning, regardless of which toolset environment you start with!

Public Data Sources and Additional Reference Material

Technology Deep Dive on Electric Vehicles: <u>https://www.iea.org/reports/electric-vehicles</u>

US Department of Transportation Justice40 Portal: https://www.transportation.gov/equity-Justice40

National Electric Vehicle Infrastructure (NEVI) Competitive Program: https://driveelectric.gov/

Climate + Economic Justice Screening Tool: https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5

Transportation Disadvantaged Census Tracts (Historically Disadvantaged Communities): https://usdot.maps.arcgis.com/apps/dashboards/d6f90dfcc8b44525b04c7ce748a3674a

Argonne National Labs - Electric Vehicle Charging Equity Considerations: https://www.anl.gov/esia/electric-vehicle-charging-equity-considerations

Spatial Studio and APEX Native Map Region: Useful Resources

Spatial Studio Guide:

https://docs.oracle.com/en/database/oracle/spatial-studio/index.html

Spatial Studio Application in Oracle Cloud Marketplace: https://cloud.oracle.com/marketplace/application/71472162/overview

Oracle Spatial Developer's Guide: https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/index.html

APEX 21.1 Native Map Regions:

https://docs.oracle.com/en/database/oracle/application-express/21.1/htmdb/creating-maps.html

Carsten Czarski Article on APEX Native Map Region: http://www.oraworld.org/fileadmin/documents/26-ORAWORLD.pdf

