From DBA to DE: Becoming a Data Engineer

2022 Webinar Series May 17, 2022

Jim Czuprynski @JimTheWhyGuy Zero Defect Computing, Inc.

Who Am I, and What Am I Doing Here?

Liron Amitzi

Jim Czuprynski

The podcast that talks about everything tech – except tech.TM

https://www.beyondtechskills.com

What Does a Modern Oracle DBA Spend Her Time On?

Protecting database health, recoverability and security

Tuning queries for **optimal performance and efficiency**

Keeping data sources as pristine as possible to refresh data domains efficiently

Not Everyone Can Be A Data Scientist. Thank Goodness.

Data scientists report that they typically spend as much as **90%** of their time cleansing data ...

... and that's when they're not searching for relevant data, in numerous places, in different formats ...

... while ensuring their selected data is sufficiently anonymized to protect subjects' privacy

NYOUG

What they'd <u>rather</u> be doing: Training models and interpreting results for useful insights

Data Science Is Just Like Application Development. (Not!)

DevOps: CI/CD Process Flow

- Focus: Capturing, retaining, and reporting on data
- Errors are relatively, if not immediately, apparent
- Worst case: Roll back to a prior version of the application and its objects within the database*

* Assuming you've planned for that eventuality!

Data Science: Data > Useful Model(s)

- Focus: Accurate (and thus useful) models
- Machine Learning / AI involves *extremely complex* mathematics that devour computing cycles
- Worst case: A perfect model is now **utterly inaccurate**!
 - Underfit: Poor *initial* training data results in bad model precisely when *it's most needed*
 - **Overfit:** Good *initial* training data yields a good model initially ... and then *new, never-before-seen* data screws up everything

Who Said AI/ML Was Easy?

Of course, it's more complicated than this. Check out my recent <u>blog post</u> for deeper insights

The Scourge of Bad Data (1)

BREAKING - 'WISCONSIN HOT' - Grassroots Group Uncovers 23,000 Votes with Same Phone Number and 8,000 Voters Registered in 1918 All In One County!

GATEWAY PUNDIT.

e report the truth — and leave the Russia-Collusion fairy tale to the Conspiracy media

Any decent clustering ML algorithm would likely produce findings like this when looking for unseen patterns within features

Trump was leading above

0.7

0.6

0.5

0.4

0.3

The reason for same dates? Values entered for birth date (1/1/00) and registration date (1/1/18) from some municipalities' voting records during conversion to a centralized voter registration system in 2002 And the duplicate phone numbers? They turned out to match a City of Racine office telephone number that had been entered by default because Racine's voting registration system required a non-NULL value

Vote Share

The Scourge of Bad Data (2)

An IT professional wanted to mess with California's Automatic License Plate Reader system ... so he registered his vanity plate as the word NULL

BRIAN BARRETT

SECURITY 00.13.2019 00:51 PM

How a 'NULL' License Plate Landed One Hacker in Ticket Hell

Security researcher Joseph Tartaro thought NULL would make a fun license plate. He's never been more wrong.

The next year, he got a \$35 ticket when he tried to renew his registration ... because NULL was no longer acceptable

After he paid the ticket, the 3rd party administrator of the ticket fines collection system apparently connected his personal details to **all plates which LEOs had registered as missing or invalid**

NYOUG

\$12,000 in fines later, he realized the joke was on him

The Scourge of Bad Data (3)

Note: We haven't even talked about the concept of *gender* yet.

So What Does a DE Do, Exactly?

What Current DE Skills Do I Need?

Note: These are only *my* impressions of what skills are typically needed across a wide spectrum. So what skills do *your* Data Science team **really** need? Ask them.

How Do You Get To Carnegie Hall? Practice, Practice, Practice.

If you're still a "core" DBA, don't fret! You can start practicing all the skills you'll need to become a **Data Engineer**

> It's easy to **leverage** the extremely powerful **Machine Learning** (ML) algorithms and **Analytic functions** already within the Oracle database ...

> > ... because sometimes the <u>only</u> way to acquire the skills for a new career vector is to **read > learn > do > teach**

Check out the <u>newest and latest features</u> of Autonomous Database, including AutoML, OML4Py, OML4SQL, Property Graph support, and Graph Studio UI

Configuring Your OML Environment (1)

1

Request new ML User creation

2 Specify username, password, and details

ORACLE Cloud Infrastructure		۰ (D)
Autonomous Transaction Processing	Download Client Credentials (Wallet) Connections to Autonomous Transaction Processing use a secure connection. Your existing tools and applications will need to use this wallet file to connect to The ORACLE Machine Learning User Administration	Set Resource Management Rules O Set resource management rules to allocate CPUIIO shares to consumer groups and to cancel SQL statements based on their runtime and amount of IO.
Overview Activity	Create User	Create Cancel
Administration Development	s le P * Username	AIMINOOB
RECLONED	First Name	m
	U Last Name O * Email Address	czuprynski jczuprynski@zerodefectcomputing.com
		Generate password and email account details to user. User will be required to reset the password on first sign in.
	Password Confirm Password	

Leveraging DBMS_DATA_MINING (1)

... and choose from a number of available data mining examples and templates

Anomaly Detection	Association Rules	Attribute Importance	Classification Prediction M	Clustering
This notebook shows how to detect	Notebook to show the use of Asso	Notebook to identify key attributes	Example notebook to predict custo	This notebook shows how to identi
Author:	Author:	Author:	Author:	Author:
Date Added: 2/13/18 11:16 PM	Date Added: 2/13/18 11:16 PM	Date Added: 2/13/18 11:16 PM	Date Added: 2/13/18 11:16 PM	Date Added: 2/13/18 11:16 PM
Tags: 'Anomaly Detection' 'Machine	Tags: 'SQL' 'Associations' 'Rules' 'M	Tags: 'SQL' 'Attribute Importance' 'K	Tags: 'Classification' 'Prediction' 'De	Tags: 'Clustering' 'K-Means' 'Expect
	X 2 Likes Q 900 4 120	2 Likes Q 623 32 32	* 5 Likes	X 1 Likes Q 706 40
My First NotebookOracle Machine Learning exampleAuthor:Date Added: 2/13/18 11:16 PMTags: 'SQL' 'Data' 'Graph'★ 4 Likes	Regression This notebook shows how to predic Author: Date Added: 2/13/18 11:16 PM Tags: 'Regression' 'SVM' 'GLM' 'Logi * 1 Likes 993 \$ 35	Statistical Function Oracle Machine Learning example Author: Date Added: 2/13/18 11:16 PM Tags: 'Statistics' 'ANOVA' 'T-test' 'F 2 Likes Q 401 L 11	Time Series Forecasting Oracle Machine Learning supports Author: Date Added: 9/5/19 4:14 AM Tags: 'Prediction' 'Time Series' 'ESM' * 0 Likes • 158 • 5	

https://adb.us-ashburn-1.oraclecloud.com/oml/tenants/ocid1.tenancy.oc1_aaaaaaaa

AutoML: Let the Database Decide!

This makes it easier for "citizen data scientists" to apply the power of ML & Analytics ...

... the new AutoML interface makes selection of the proper algorithms a snap ...

... and many more new features, including Graph Studio

New Innovations in Oracle Autonomous Data Warehouse

The latest release includes many new innovations, not only a broad set of capabilities that make it easier for analysts, citizen data scientists, and line-of-business developers to take advantage of the industry's first and only self-driving cloud data warehouse, but also features that deliver deeper analytics and tighter data lake integration. Key capabilities include:

- Built-in Data Tools: Business analysts now have a simple, self-service environment for loading data and making it available to their extended team for collaboration. They can load and transform data from their laptop or the cloud by simply dragging and dropping. They can then automatically generate business models; quickly discover anomalies, outliers and hidden patterns in their data; and understand data dependencies and the impact of changes.
- Oracle Machine Learning AutoML UI: By automating time-intensive steps in the creation of machine learning models, the AutoML UI provides a no-code user interface for automated machine learning to increase data scientist productivity, improve model quality and enable even non-experts to leverage machine learning.

E ORACLE Delatere Adore Del	ia Load		© , Я, аттам ~
What do you want to do with you	r data?		Getting Started
🖇 LOAD DATA Ingent data into your Autonomuus Database	S LINK DATA Lease your data in place and lat your Autonomous Database access it	In FEED DATA Satus orgoing load of new data into your Autonomous Database	Serius en Ingent Job Sinice hone you went To analybe your data and where it is une and Fred data are only available for natwork counces Explore Explore Explore data in your Autonomous
Where is your data?			Deletere Verage Varage year Cleud Starage Locations
LOCAL FLE Satest test or Elect files harn your local divice	E DATABASE Solid Lation from your romete databases	C CLOUD STORAGE Salet huckets from doud storage (Crade, S2, Azurs, Geogle)	Need Help? Decorrectation 50. Developer on Twitter 50. Developer on Twitter
Explore and Connect		Next	
IIII EXPLORE Impect data in your Autonomous Database	CLOUD LOCATIONS Manage connections to your cloud dorage (Davide, S3, Asure, Gangle)		
⊗ 1 △ 4 ◎ 4 1 25540.78594.0000408	built DAM		
Dracle Data Load	d		

Check out the <u>summary</u> of all the latest AutoML enhancements!

Building a Data Source for AutoML to Devour

We're drawing on

data summarized

from a Hybrid

Partitioned table

containing financial

statistics

```
CREATE TABLE t smartmeter business profiles AS
SELECT
 sm id
    ,CD.cd minority owned
    , CD ad family concertions
    , CD \cdot \cdot \cdot
        ,t customer demographics CD
    , CD
        , (SELECT
    , CF
               sm id
    ,CF
               ,ROUND(AVG(smr kwh used),2) AS avg kwh used
    , SM
               ,ROUND(AVG(smr solar kwh),2) AS avg solar kwh
    , SM
               ,ROUND(AVG(smr solar kwh) / AVG(smr kwh used) ,2) AS pct solar
    , SM
              , CASE
    , SM
                  WHEN ROUND (AVG (smr solar kwh) / AVG (smr kwh used) ,2) >= 0.15
  FROM
                  THEN 1 ELSE 0
               END AS solar superuser
  • •
            FROM
                t smartmeters
                                                     ... as well as customer
               ,t meter readings
           WHERE smr id = sm id
                                                      demographics and
           GROUP BY sm id
                                                    solar energy usage data
           ORDER BY sm id) SM
         WHERE SM.sm id = CF.cf id
           AND SM.sm id = CD.cd id
         ORDER BY sm id;
```


Regression Experiments with AutoML(1)

Crea

Name * Solar Su Commer Regress Data Sou

Prediction Select

► Add

🔺 Fea

C→ Ref

No data

First, select an appropriate **data** source

2 AutoML automatically builds a list of potential **features** and their key **metrics**

					=	AIML_Experiment	s [Jim Workspac 🔻	S AIM	NOOB 💌
DRACLE [®] Machine I	Create Experiment						► Start ▼	1 Save	Cancel
ate Experimen	Name * Solar SuperUser Regression Comments								
perUser Regression	Regression experiments against Solar Super-User	data sources							
ts	Data Source *			Predict *					
on experiments against Solar Su	SIMIOT.T_SMARTMETER_BUSINESS_PROFILES		٩,	SOLAR_SUPERUSER				•	
rce *	Prediction Type *			Case ID					
	Regression		•	SM_ID				- X	
n Type * rediction Type	Additional Settings								
itional Settings	✓ Features								
	🕞 Refresh							Sea	irch
cures	Name	Туре	Percent NULLs	Distinct Values	Min	Max	Mean	Std Dev	
esh	AVG_SOLAR_KWH	NUMBER	0	315	4.09	7.83	5.95	0.4	•
ame Type	CD_FAMILY_GENERATIONS	NUMBER	0	4	0	3	0.42	1.04	
to display.	CD_LOCALE_OWNERSHIP	CHAR	0	2					
	CD_MINORITY_OWNED	CHAR	0	2					
	CD_YEARS_IN_BUSINESS	NUMBER	0	99	1	99	49.85	28.83	
	PCT_PROFIT_MARGIN	NUMBER	0	41	0.1	0.5	0.3	0.04	
	PCT_SOLAR	NUMBER	0	14	0.1	0.23	0.15	0.02	
	SM_ID	NUMBER	0	50067	1969787	2766834	2684098.22	64562.58	
	SOLAR_SUPERUSER	NUMBER	0	2	0	1	0.61	0.69	¥

Regression Experiments with AutoML(2)

Start the experiment, choosing either **speed** or **accuracy**

ſ	🕨 Start 💌
	Faster Results
	Better Accuracy

Q

•

3

Review settings for prediction type, run time, model metric, and ML algorithms to apply

Regression Experiments with AutoML(3)

AutoML now 5

finishes any sampling needed and

moves on to

feature

selection

Regression Experiments with AutoML(4)

7

Model generation is complete! On to Feature Prediction Impact assessment ...

	egression		Progress	×
Experiment Settings 🥒 Edit			Algorithm Selection Completed	0
2			Adaptive Sampling Completed	٢
1.8 1.6			Feature Selection Completed	0
1.2 1.0			Model Tuning Completed	0
eader Board			Neural Network Completed	0
Deploy Create Notebook Metrics			Support Vector Machine (Gaussian Completed	n) 🕑
Algorithm	Model Name	R2	Generalized Linear Model (Ridge	0
-		1 0000	Regression)	
- Neural Network	nn_b512342ae0	1.0000	Completed	
- Neural Network Support Vector Machine (Gaussian)	nn_b512342ae0 svmg_014b2e6609	0.9902	Completed Generalized Linear Model	0
- Neural Network Support Vector Machine (Gaussian) Generalized Linear Model (Ridge Reg	nn_b512342ae0 svmg_014b2e6609 glmr_2fa2ad7b18	0.9902	Completed Generalized Linear Model Completed	0
- Neural Network Support Vector Machine (Gaussian) Generalized Linear Model (Ridge Reg Generalized Linear Model	nn_b512342ae0 svmg_014b2e6609 glmr_2fa2ad7b18 glm_09f528c735	0.9902 0.6107 0.6107	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed	0

Regression Experiments with AutoML(5)

8

Regression(s) **complete**! Now let's transform the **Neural Network** model into a **Zeppelin notebook**, with *just a few mouse clicks*

0.2 0.0 Leader Board				Progress Algorithm Selection Completed Adaptive Sampling	×			
Deploy Create Notebook Methes				Completed				
Algorithm	Model Name		R2	Feature Selection Completed	•			
Neural Network	nn_b512342ae0		1.0000	Model Tuning				
Support Vector Machine (Gaussian)	svmg_014b2e6609		0.9902	Completed				
Generalized Linear Model (Ridge Reg	glmr_2fa2ad7b18		0.6107	Neural Network	0			
Generalized Linear Model	glm_09f528c735		0.6107	Completed	_			
Support Vector Machine (Linear)	svml_7226085a05		0.5828	Support Vector Machine (Gaussia Completed	an) 🕗			
(Feetures				Generalized Linear Model (Ridge Regression)				
Refresh				Generalized Linear Model	0			Search
Refresh		7	Devent NUM -	Completed Generalized Linear Model Completed	0	Mar	Mara	Search
Refresh Name	Importance	Туре	Percent NULLs	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed	0	Max	Mean	Search Std Dev
Refresh Name AVG_CREDIT_SCORE	Importance	Type NUMBER	Percent NULLs	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed	0	Max 879	Mean 667.28	Search Std Dev 39.7
	Importance	Type NUMBER NUMBER	Percent NULLs 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed	0	Max 879 52.24	Mean 667.28 40.12	<i>Search</i> Std Dev 39.7 2.42
	Importance	Type NUMBER NUMBER NUMBER	Percent NULLs 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed	0	Max 879 52.24 7.83	Mean 667.28 40.12 5.95	<i>Search</i> Std Dev 39.7 2.42 0.4
	Importance	Type NUMBER NUMBER NUMBER NUMBER	Percent NULLs 0 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed	0	Max 879 52.24 7.83 3	Mean 667.28 40.12 5.95 0.42	Search Std Dev 39.7 2.42 0.4 1.04
	Importance	Type NUMBER NUMBER NUMBER NUMBER CHAR	Percent NULLs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed 4 0 2	0	Max 879 52.24 7.83 3	Mean 667.28 40.12 5.95 0.42	Search Std Dev 39.7 2.42 0.4 1.04
	Importance	Type NUMBER NUMBER NUMBER NUMBER CHAR CHAR	Percent NULLs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed 4 0 2 2	0	Max 879 52.24 7.83 3	Mean 667.28 40.12 5.95 0.42	Search Std Dev 39.7 2.42 0.4 1.04
	Importance	Type NUMBER NUMBER NUMBER NUMBER CHAR CHAR NUMBER	Percent NULLs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed 4 0 2 2 2 99 1	0	Max 879 52.24 7.83 3	Mean 667.28 40.12 5.95 0.42 49.85	Search Std Dev 39.7 2.42 0.4 1.04 28.83
	Importance	Type NUMBER NUMBER NUMBER CHAR CHAR CHAR NUMBER NUMBER	Percent NULLs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed 4 0 2 2 99 1 41		Max 879 52.24 7.83 3 99 0.5	Mean 667.28 40.12 5.95 0.42 49.85 0.3	Search Std Dev 39.7 2.42 0.4 1.04 28.83 0.04
	Importance	Type NUMBER NUMBER NUMBER CHAR CHAR CHAR NUMBER NUMBER	Percent NULLs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Completed Generalized Linear Model Completed Support Vector Machine (Linear) Completed Feature Prediction Impact Completed 4 0 2 2 2 99 1 41 0 14 0		Max 879 52.24 7.83 3 99 0.5 0.23	Mean 667.28 40.12 5.95 0.42 49.85 0.3 0.15	Search Std Dev 39.7 2.42 0.4 1.04 28.83 0.04 0.02

Transform an AutoML Experiment into a NoteBook (1)

<- Experiments		
Solar SuperUser Regression		
🕨 Experiment Settings 🛛 🖋 Edit		2 Name the new notebook
R2		
1.0 0.8		Create Notebook ×
0.6 0.4 0.2	- 1	Create a notebook based on selected model and this experiment's settings. Use a generated notebook to further tune your approach using Python.
0.0		Notebook Name: SolarSuperUserRegression (NN)
Leader Board		OK Cancel
Deploy Create Notebook Metrics		
Algorithm	Model Name	gimr_2ta2ad7b18
Neural Network	nn_b512342ae0	-1 00500-735
Support Vector Machine (Gaussian)	svmg_014b2e6609	
Generalized Linear Model (Ridge Regression)	glmr_2fa2ad7b18	
Generalized Linear Model	glm_09f528c735	
Support Vector Machine (Linear)	svml_7226085a05	

Transform an AutoML Experiment into a NoteBook (2)

Don't know Python? No worries! The new notebook uses **OML4Py** to construct paragraphs for **data retrieval** and **modeling**

Transform an AutoML Experiment into a NoteBook (3)

olarSupe	rUserRegressio	on (NN) ⊵≍∎	₩ / 🕯 🕹 🔹 Q			1 📼
Build Data						FINISHED
%python						
import oml						
column = ','.joi	in(columns)					
column = ','.joi query = 'SELECT data_build = oml z.show(data_buil	in(columns) ' + column + ' FROM ' + schemi I.sync(query=query) Id) MARK MARK Set Set	a + '.' + table ttings ▼	AVC SOLAD KW			
column = ','.joi query = 'SELECT data_build = oml z.show(data_buil SM_ID	in(columns) ' + column + ' FROM ' + schemi i.sync(query=query) id) Market Market Schemic Schemic AVG_CREDIT_SCO.: 702	a + '.' + table ttings ▼ AVG_KWH_USED .:.	AVG_SOLAR_KW	CD_FAMILY_GENERATION	CD_LOCALE_OWNERSY	CD_MINORITY_OWN
column = ','.joi query = 'SELECT data_build = oml z.show(data_buil SM_ID 1969787	in(columns) ' + column + ' FROM ' + schemi L.sync(query=query) id) Market Market Set V AVG_CREDIT_SCO 702	a + '.' + table ttings • AVG_KWH_USED .:: 41.9	AVG_SOLAR_KW ∵ 5.64	CD_FAMILY_GENERATION	CD_LOCALE_OWNERS	CD_MINORITY_OWN
column = ','.joi query = 'SELECT data_build = oml z.show(data_buil SM_ID 1969787 2230604	in(columns) ' + column + ' FROM ' + schemi i.sync(query=query) id) Market Market Sel AVG_CREDIT_SCO 702 621	a + '.' + table ttings ▼ AVG_KWH_USED 41.9 40.26	AVG_SOLAR_KWY 5.64 6.32	CD_FAMILY_GENERATION 2 2	CD_LOCALE_OWNERSY N Y	CD_MINORITY_OWN Y Y
Column = ','.joi query = 'SELECT data_build = oml z.show(data_buil ■	in(columns) ' + column + ' FROM ' + schemi L.sync(query=query) id) MUSTING CREDIT_SCO 702 621 689	AVG_KWH_USED .:: 41.9 40.26 41.01	AVG_SOLAR_KWY 5.64 6.32 5.83	CD_FAMILY_GENERATION 2 2 0	CD_LOCALE_OWNERSY N Y N	CD_MINORITY_OWN Y Y Y
<pre>- column = ','.joi query = 'SELECT data_build = oml z.show(data_buil</pre>	in(columns) ' + column + ' FROM ' + schemi sync(query=query) id) MAVG_CREDIT_SCO 702 621 689 652	a + '.' + table ttings ▼ AVG_KWH_USED 41.9 40.26 41.01 37.76	AVG_SOLAR_KW¥ 5.64 6.32 5.83 5.94	CD_FAMILY_GENERATION 2 2 0 0	CD_LOCALE_OWNERS N Y N N	CD_MINORITY_OWN Y Y Y Y
column = ','.joi query = 'SELECT data_build = oml z.show(data_buil ■	in(columns) ' + column + ' FROM ' + schem L.sync(query=query) d) ▲ ▲ Sel ▲ Sel ▲ Sel ▲ Sel ▲ Sel 621 689 652 618	AVG_KWH_USED .:: 41.9 40.26 41.01 37.76 38.01	AVG_SOLAR_KW 5.64 6.32 5.83 5.94 5.94	CD_FAMILY_GENERATION 2 2 0 0 0 0	CD_LOCALE_OWNERSY N Y N N N	CD_MINORITY_OWN Y Y Y Y Y
column = ','.joi query = 'SELECT data_build = oml z.show(data_buil SM_ID 1969787 2230604 2314443 2320514 2333622 2390930	in(columns) ' + column + ' FROM ' + schemi i.sync(query=query) id) • AVG_CREDIT_SCO 702 621 689 652 618 670	AVG_KWH_USED 41.9 40.26 41.01 37.76 38.01 41.34	AVG_SOLAR_KW 5.64 6.32 5.83 5.94 5.94 5.57	CD_FAMILY_GENERATION: 2 2 0 0 0 0 0	CD_LOCALE_OWNERS N Y N N N N N	CD_MINORITY_OWN Y Y Y Y Y Y Y

5

Et voila! Here's your first results from a notebook completely generated via *AutoML*!

How Do I Keep My DE Career Relevant?

How did you keep your Developer / DBA career relevant? How is this <u>any different</u>?

NYOUG

Associate with other
 DEs, and help uplift
 others to DE status

 Attend conferences and training sessions on latest industry trends

 Consider certifying your hard-won, newly-acquired skills

They call it *life-long learning* for a reason - it **never**, <u>ever</u> stops!

Are There Any DE Professional Organizations? Maybe.

Further Reading In the Real World of Data Science

• Al Projects Fail All Too Often. Successful Ones Share a Common Secret

https://gestaltit.com/tech-talks/intel/intel-2021/jimthewhyguy/ai-projects-fail-all-too-often-successful-ones-share-a-common-secret/

- Machine Learning in Production: Why Is It So Hard and So Many Fail? https://towardsdatascience.com/machine-learning-in-production-why-is-it-so-difficult-28ce74bfc732
- Fact Check-Claims about 23,000 Wisconsin voters with the same phone number and 4,000 voters registered on 1/1/1918

https://www.reuters.com/article/factcheck-wisconsin-numbers/fact-check-claims-about-23000-wisconsin-voters-with-the-same-phonenumber-and-4000-voters-registered-on-1-1-1918-missing-context-idUSL1N2RU1WC

• How a 'NULL' License Plate Landed One Hacker in Ticket Hell

https://www.wired.com/story/null-license-plate-landed-one-hacker-ticket-hell/

Useful Oracle Documentation

• What is Data Science?

https://www.oracle.com/data-science/what-is-data-science/

• Machine Learning Solutions with Oracle's Services and Tools

https://www.oracle.com/a/ocom/docs/build-machine-learning-solutions-cloud-essentials.pdf

Oracle Cloud Infrastructure Data Catalog

https://www.oracle.com/a/ocom/docs/ebook-cloud-infrastructure-data-catalog.pdf

• OML Algorithms "Cheat Sheet"

https://www.oracle.com/a/tech/docs/oml4sql-algorithm-cheat-sheet.pdf

• Oracle 21c Machine Learning Basics (including AutoML)

https://docs.oracle.com/en/database/oracle/machine-learning/oml4sql/21/dmcon/machine-learning-basics.html

