
Need for Speed?
Top Five Oracle Performance
Tuning Tips

Senior Sales Consultant

Welcome

Janis Griffin

Who Am I?

Twitter® - @DoBoutAnything

– Current – 30+ Years in Oracle®,
DB2®, ASE, SQL Server®,
MySQL®

– DBA and Developer

Specialize in Performance Tuning

Customers Common Question: How do I tune it?

Janis.Griffin@quest.com

3 quest.com | confidential

Agenda

• Challenges of Tuning

– Monitor Wait Time

o Find the right SQL statements to work on

o Get Baseline Metrics

– Review the Execution Plan

o Know which Optimizer Features are being used

– Gather Object Information

o Review Table, Column, Index & Constraint information

o Understand Column Selectivity & Statistics

– Find the Driving Table

o Consider SQL Diagramming

– Engineer out the Stupid

4 quest.com | confidential

Challenges Of Tuning

• SQL Tuning is Hard

– Who should tune – DBA or Developer

– Which SQL to tune

• Requires Expertise in Many Areas

– Technical – Plan, Data Access, SQL Design

– Business – What is the Purpose of SQL?

• Tuning Takes Time

– Large Number of SQL Statements

– Each Statement is Different

• Low Priority in Some Companies

– Vendor Applications

– Focus on Hardware or System Issues

6 quest.com | confidential

1. Monitor Wait Time

• Identify Wait Time at every step and rank them by user impact

• Understand the total time a Query spends in Database

• Oracle helps by providing Wait Events

Database

SQL
Request

SQL
Request

SQL
Request

SQL
Request

SQL
Request

SQL
Response SQL

Response

SQL
Response

SQL
Response

SQL
Response

7 quest.com | confidential

Wait Event Information

V$SESSION

SID

SERIAL#
USERNAME

MACHINE
PROGRAM
MODULE

ACTION
CLIENT_INFO

SQL_ID
SQL_CHILD_NUMBER
EVENT

P1TEXT
P1

P2TEXT
P2
P3TEXT

P3
STATE (WAITING, WAITED)

BLOCKING_SESSION

V$SQL

SQL_ID

SQL_FULLTEXT
PLAN_HASH_VALUE

CHILD_NUMBER
IS_BIND_SENSITIVE
IS_BIND_AWARE

IS_SHAREABLE
SQL_PROFILE

SQL_PATCH
SQL_PLAN_BASELINE
BIND_DATA

IS_REOPTIMIZABLE
IS_RESOLVED_ADAPTIVE_PLAN

V$SQL_PLAN

SQL_ID

PLAN_HASH_VALUE
CHILD_NUMBER

OPERATION
OBJECT_NAME
OTHER_XML

V$SQL_BIND_CAPTURE

SQL_ID

NAME
VALUE_STRING

DATATYPE_STRING
LAST_CAPTURED

V$SQLAREA

SQL_ID

EXECUTIONS
PARSE_CALLS

DISK_READS
BUFFER_GETS

DBA_OBJECTS

OBJECT_ID

OBJECT_NAME
OBJECT_TYPE

7

8 quest.com | confidential

Base Query - Not Rocket Science

INSERT INTO wta_data
SELECT

sid, serial#, username, program, module, action,
machine, osuser, sql_id, blocking_session,
decode(state, 'WAITING', event, 'CPU') event,
p1, p1text, p2, p2text, p3, p3text,
SYSDATE date_time

FROM V$SESSION s
WHERE s.status = 'ACTIVE'
AND wait_class != 'Idle'
AND username != USER;

.

SELECT wta.sql_id, wta.event, COUNT(*)
time_in_second, tot_time

FROM wta_data wta,

(SELECT sql_id, COUNT(*) tot_time

FROM wta_data GROUP BY sql_id) tot

WHERE wta.sql_id = tot.sql_id
GROUP BY wta.sql_id,wta.event, tot_time

ORDER BY tot_time,wta.sql_id,

time_in_second;

9 quest.com | confidential

• V$ACTIVE_SESSION_HISTORY

– Data warehouse for session statistics

– Oracle 10g and higher

– Data is sampled every second

– Holds at least one hour of history

– Never bigger than:

o 2% of SGA_TARGET

o 5% of SHARED_POOL (if automatic sga sizing is turned off)

• WRH$_ACTIVE_SESSION_HISTORY

– Above table gets flushed to this table

o AKA – dba_hist_active_sess_history

• Need Tuning & Diagnostics Packs

– On Enterprise Only

Active Session History (ASH)

SELECT summary.sql_id, event, sql_text, event_time_in_seconds, tot_time_in_seconds

FROM (SELECT a.sql_id, DECODE(a.session_state, 'WAITING', a.event, 'ON CPU') event,

SUBSTR(v.sql_text,1,30) sql_text,

SUM(a.wait_time + a.time_waited)/1000000 event_time_in_seconds

FROM v$active_session_history a, v$sqlarea v, dba_usersu

WHERE a.sample_time BETWEEN SYSDATE - 1 AND SYSDATE

AND a.sql_id = v.sql_id AND a.user_id = u.user_id AND u.username <>'SYS'

GROUP BY a.sql_id, DECODE(A.session_state, 'WAITING', a.event, 'ON CPU'),

SUBSTR(v.sql_text,1,30)) detail,

(SELECT sql_id, SUM(wait_time + time_waited)/1000000 tot_time_in_seconds

FROM v$active_session_history

WHERE sample_time BETWEEN SYSDATE - 1 AND SYSDATE GROUP BY sql_id) summary

WHERE detail.sql_id = summary.sql_id

ORDER by tot_time_in_seconds, sql_id, event_time_in_seconds

9

10 quest.com | confidential

• Focus on SQL statements spending the most time in the database

Wait Time Analysis

11 quest.com | confidential

Benefits of Wait Time Analysis – Cont.

• Get baseline metrics

– How long does it take now

– What is acceptable (10 sec, 2 min, 1 hour)

– Get number of Buffer Gets

o Measurement to compare against while tuning

• Collect Wait Event Information

– Locking / Blocking (enq)

– I/O problem (db file sequential read)

– Latch contention (latch)

– Network slowdown (SQL*Net)

– May be multiple issues

– All have different resolutions

12 quest.com | confidential

Other Benefits: Query Suddenly runs slower

13 quest.com | confidential

2. Review the Execution Plan

• EXPLAIN PLAN

– Estimated plan - can be wrong for many reasons

o Best Guess, Blind to Bind Variables or Data types

o Explain Plan For … sql statement & DBMS_XPLAN.display

o Set autotrace (on | trace | exp | stat | off)

• Tracing (all versions) / TKPROF

– Get all sorts of good information

– Works when you know a problem will occur

• V$SQL_PLAN (Oracle 9i+)

– Actual execution plan

– Use DBMS_XPLAN.display_cursor for display

• Historical Plans – AWR, Quest Foglight

– Shows plan changes over time

14 quest.com | confidential

How an Execution Plan is Created

Query Transformer – rewrites
query to be more efficient

Plan Generator – creates
multiple plans using different

access paths & join types. Plan

with lowest cost is chosen

Estimator – looks at selectivity,
cardinality & cost

Data Dictionary

Schema Definition

&

Statistics

Parsed Query (from Parser)

Transformed Query

Query + Estimates

Default Plan sent to Row Source Generator to create execution plan

Init.ora parameter to control behavior:
OPTIMIZER_FEATURES_ENABLED

OR Expansion
View Merging

Predicate Pushing

Subquery Unnesting

Query Rewrite with

Materialized Views
Star Transformation

In-Memory Aggregation

Table Expansion

Join Factorization

https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_transform.htm

15 quest.com | confidential

Execution Plan Steps

• Show the sequence of operations performed to run SQL Statement
– Order of the tables referenced in the statements
– Access method for each table in the statement

o INDEX
o TABLE ACCESS
o VIEW

– Join method in statement accessing multiple tables
o HASH JOIN
o MERGE JOIN
o NESTED LOOPS

– Data manipulations
o CONCATENATION
o COUNT
o FILTER

– Statistic Collectors
o New in 12C

16 quest.com | confidential

Examine the Execution Plan

• Find Expensive Operators

– Examine cost, row counts and time of each step

– Look for full table or index scans

• Review the Predicate Information

– Know how bind variables are being interpreted

o Review the data types

o Implicit conversions

– Know which step filtering predicate is applied

• Review the Join Methods

– Nested Loops – good for large table / small table (lookup) joins

– Hash Joins – good for large table / large table joins

• Check out the Notes Section

– They are becoming increasingly important

17 quest.com | confidential

Execution Plan Details

SELECT e.empno EID, e.ename "Employee_name",
d.dname "Department", e.hiredate "Date_Hired"

FROM emp e, dept d WHERE d.deptno = :P1 AND e.deptno = d.deptno;

Actual Plan: V$SQL_PLAN using dbms_xplan.display_cursor

18 quest.com | confidential

Know Which Optimizer Features You are Using

• Show parameter optimizer

• What is supporting the Execution Plan

– SQL Plan Management (Baselines) / Profiles / Outlines / Patches

– Dynamic Statistics, Statistics Feedback or SQL Directives

– Adaptive Cursor Sharing

– Adaptive Plans

• Notes Section gives you clues

Adaptive Query
Optimizer

Adaptive Plans
Adaptive
Statistics

Join
Methods

Para llel
Dis tribution

Dynamic
Statistics

Automatic
Reoptimization

Sql Plan
Directives

19 quest.com | confidential

Execution Plan using Optimizer Feature: SPM (baselines)

• Select * from dba_sql_plan_baselines

20 quest.com | confidential

Adaptive Plan example

• Adapted on first execution

New format options for
dbms_xplan are:

‘+adaptive’ – inactive

steps ‘+report’ –

reporting_only

21 quest.com | confidential

19c Automatic Indexing – What is it?

• Implements indexes based expert index tuning knowledge

– Identifies ‘candidate indexes’ based on table column usage

– Without DBA involvement

o Except for DBA can set preferences

> View report of indexes and their impact on the application

• Works incrementally

– Needs to be iterative and continuous

– Created as invisible

o Uses ‘SYS_AI’ as the name prefix

– Automatic indexes are tested

o If improved performance – indexes made visible

o If no improvement – indexes are marked unusable

> Later removed

Verify

Identify

Decide

Capture

Monitor

Online
Validation

22 quest.com | confidential

19c Automatic Indexing Requirements

• Feature is only available to Enterprise Edition on Engineered Systems

– Exadata only

– Workaround for testing / development

o In CDB as sysdba

Alter system set “_Exadata_feature_on”=true scope=spfile;

Shutdown immediate;

Startup

– Unfortunately, this is not supported

o Don’t use on real system

23 quest.com | confidential

3. Gather Object Information

• Understand objects in execution plans

– Table Definitions & Segment sizes

o Is it a View?

> Get underlying definition

o Number of Rows / Partitioning

– Examine Columns in Where Clause

o Cardinality of columns

o Data Skew / Histograms

– Statistic Gathering

o Tip: Out-of-date statistics can impact performance

• See tuning.sql script in appendix

– Run it for expensive data access targets

24 quest.com | confidential

Review Indexes & Constraints

• Get Index definitions

– Know the order of columns and their selectivity

• Review existing keys and constraints

– Know Multi-Table Relationships (ERD)

o Primary key and foreign definitions

– Check and not null constraints

• Make sure the optimizer can use the index

– Functions on indexed columns can turn off index

o Consider a function index

– Look for implicit conversions

o Get sample bind variable values

– Is the index INVISIBLE?

SELECT name, position, datatype_string, value_string
FROM v$sql_bind_capture
WHERE sql_id = '0zz5h1003f2dw’;

FREE - Oracle SQL Dev eloper Data Modeler: Oracle SQL Dev eloper Data Modeler

Tip: Keys & constraints help the

optimizer create better execution

plans

http://www.oracle.com/technetwork/developer-tools/datamodeler/sqldevdm31ea-download-515132.html

25 quest.com | confidential

Understand Statistics gathering

• GATHER_*_STATS procedures have many parameters

– Should only set 2-4 parameters (per Tom Kyte)

o SCHEMA NAME

o TABLE NAME

o PARTITION NAME

o DOP

– Defaults for: exec dbms_stats.gather_schema_stats(‘SOE’);

New GET_PREFS

function

DBMS_STATS package
• Rewritten in 11g

• A Faster & better AUTO_SAMPLE_SIZE

• 100% in less time & more accurate than 10%
estimate

• Avoid using ESTIMATE_PERCENT

select dbms_stats.get_prefs('ESTIMATE_PERCENT') from
dual;

26 quest.com | confidential

Optimizer tries to fix Statistics Mistakes

• Dynamic Statistics

– Missing, Insufficient, Stale Statistics or Parallel Execution

– New level 11 in 12c

o alter session set OPTIMIZER_DYNAMIC_SAMPLING = 11;

• Statistics Feedback

– Collectors sample statistics on 1st execution

o Default stats compared with actual rows sampled

o If they differ significantly, optimizer stores correct estimates for future use

> Stored in OPT_ESTIMATE hints in V$SQL_REOPTIMIZATION_HINTS

• SQL Plan Directives

– Additional info for missing column group statistics or histograms

– Dynamic sampling performed on directive

o Until statistics are gathered for the column group (e.g. City / State / Country)

– Not tied to a specific sql statement – defined on a query expression

What

wrong

with

these

pictures?

27 quest.com | confidential

4. Find the Driving table

• Need to know the size of the actual data sets in each step

– In Joins (Right, Left, Outer)

– What are the filtering predicates

– When is each filtering predicate applied

o Try to filter earlier rather than later

• Compare size of final result set with # of data reads

• Find the driving table

o To reduce buffer gets SELECT s.fname, s.lname, r.signup_date

FROM student s
INNER JOIN registration r ON s.student_id = r.student_id

INNER JOIN class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'
AND r.signup_date BETWEEN :beg_date AND :beg_date +1

AND r.cancelled = 'N'

Joins

Filtering
Predicates

28 quest.com | confidential

Case Study

• Who registered yesterday for SQL Tuning?

SELECT s.fname, s.lname, r.signup_date

FROM student s

INNER JOIN registration r ON s.student_id = r.student_id

INNER JOIN class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'

AND r.signup_date BETWEEN :beg_date AND :beg_date +1

AND r.cancelled = ‘N‘

Execution Stats –118,950,464 Buffer Gets

Execution Time – .01 seconds to execute
Wait Events – cursor: pin S wait on X
CPU – 57.46%

29 quest.com | confidential

Execution Plan

30 quest.com | confidential

Relationship Diagram

• Registration – 80,000

• Student – 10,000

• Class – 1,000

31 quest.com | confidential

Tuning Advisor

• Recommends – 2 new indexes

DECLARE

l_sql_tune_task_id VARCHAR2(100);
BEGIN

l_sql_tune_task_id := DBMS_SQLTUNE.create_tuning_task (sql_id => '&sql_id',

scope => DBMS_SQLTUNE.scope_comprehensive, time_limit => 60,
task_name => '&sql_id', description => 'Tuning task for class registration query');

DBMS_OUTPUT.put_line('l_sql_tune_task_id: ' || l_sql_tune_task_id);
END;

/

EXEC DBMS_SQLTUNE.execute_tuning_task(task_name => '&sql_id');

32 quest.com | confidential

Tuning Advisor

• Recommends – 2 new indexes

– Select DBMS_SQLTUNE.report_tuning_task(‘&task_name’) from dual;

33 quest.com | confidential

19c Automatic Indexes Enabled for Schema ‘Test’

Created 2 indexes –
1 on Class
1 on Registration

34 quest.com | confidential

Auto Indexes Created

• Shows status of indexes

– 2 indexes are taking up space

Class.name

Reg.Class_id,Canceled

35 quest.com | confidential

Auto Index Rational of Registration (class_id, canceled)

SELECT a.execution_name, a.table_name,
a.index_name, b.stat_name, a.start_time

FROM dba_auto_index_ind_actions a, dba_auto_index_statistics b
WHERE a.execution_name = b.execution_name
ORDER BY 5,3;

DBA_AUTO_INDEX_VERIFICATIONS

36 quest.com | confidential

SQL Diagramming

• Great Book “SQL Tuning” by Dan Tow

– Oldie but a goodie that teaches SQL Diagramming

– http://www.singingsql.com

registration

student class

5

1

30

1

5%

.2

select count(1) from registration where cancelled = 'N'

and signup_date between '2016-12-10 00:00' and '2016-12-11 00:00'

4344 / 80000 * 100 = 5.43%

5.43

select count(1) from class where name = 'SQL TUNING'

2 / 1000 * 100 = .2

37 quest.com | confidential

New Execution Plan

• CREATE INDEX cl_name ON class(name);

38 quest.com | confidential

Review Index Order

• CLASS_ID not left leading in index

• Execution Stats – 20,348 buffer gets

39 quest.com | confidential

New Execution Plan

• CREATE INDEX reg_alt ON registration(class_id);

Original

40 quest.com | confidential

Tuning Advisor Suggested Index

create index REG_CANCEL_SIGNUP on registration (cancelled, signup_date,class_id, student_id);

41 quest.com | confidential

Auto Indexes on Class Or Registration (Not Both)

42 quest.com | confidential

Better Execution Plan – DBA Intervention

CREATE INDEX reg_alt ON registration(class_id,signup_date, cancelled);

43 quest.com | confidential

DBA Index on Registration Wins

• Original Plan cost 114

• Tuning Advisor on Class(name, class_id), Registration(cancelled, signup_date, class_id, student_id)

– Cost 23

• Auto Index on Class(name) cost 107

• Auto Index on Registration(class_id, canceled) cost 76

• DBA Index on Class(name), Registration(class_id, signup_date, cancelled)

– Cost 11

44 quest.com | confidential

Performance Improved?

45 quest.com | confidential

5. Engineer out the Stupid

• Look for Performance Inhibitors

– Cursor or row by row processing

– Parallel processing

o Don’t use in an OLTP environment

o Use only when accessing large data sets and additional resources can be allocated

– Nested views that use db_links

– Abuse of Wild Cards (*) or No Where Clause

o Select ONLY those columns in a query which are required.

o Extra columns cause more I/O on the database & increase network traffic

o Code-based SQL Generators (e.g. Hibernate)

– Using functions on indexed columns (SUBSTR, TO_CHAR, UPPER, TRUNC)

o Optimizer can’t use the index

o Instead move the function to the constant or variable side of equation

o Consider creating a function based index

– Hard-coded Hints

45

select… where upper(last_name) = ‘GRIFFIN’
Better way: select … where last_name = upper(:b1);

46 quest.com | confidential

More Do’s and Don’ts
• Reduce SORT operations as they slow down your queries

– Don’t use the UNION operator if you can use UNION ALL

– Don’t use the DISTINCT keyword if you don’t need it

• When using a composite/multi-column index, access the left-leading column (in
WHERE)

– An INDEX SKIP SCAN may occur which is often no better than a FULL TABLE SCAN

• Try to avoid Cartesian product queries

• Use bind variables instead of literal values

– To reduce repeated parsing of the same statement

• If using sub-queries, make use of the EXISTS operator when possible

– Optimizer will stop with a match and avoid a FULL TABLE SCAN

• Try to use an index if less than 5% of the data needs to be accessed

– Exception: small table are best accessed through a FULL TABLE SCAN

o Consider keeping in memory

47 quest.com | confidential

Avoid Common Pitfalls

• Use equi-joins whenever possible

– Try not to use ‘not in’, !=, <>, not null, etc…

– Optimizer has more choices to choose from

• Avoid complex expressions such as NVL(col1,0), TO_DATE(), TO_NUMBER(), etc…

– They prevent the optimizer from assigning valid cardinality or selectivity estimates

– Can affect the overall plan and the join methods

• Avoid joining complex views

– May instantiate all views to run query against (reading too much data)

– Querying views requires all tables from the view to be accessed

o If they aren’t required, then don’t use the view

• Use the partition key in the ‘WHERE’ clause if querying a partitioned table

– Partition pruning will be used to reduce the amount of data read

48 quest.com | confidential

When you need to uses hints

• If you can hint it, baseline it (per Tom Kyte)

– Alternative to using hints

o Hints difficult to manage over time

o Once added, usually forgotten about

– 3rd Party Software – can’t modify code

11121112

50 quest.com | confidential

Case Study 2 – Orders by Customer Last Name

SELECT c_last, c_first, c_street_1, c_city, c_state, c_zip,
c_phone, o_entry_d, d_name, ol_delivery_d, ol_quantity, ol_amount

FROM order_line, orders, district, customer, stock
WHERE o_id = ol_o_id
AND o_c_id=c_id
AND s_i_id = ol_i_id
AND d_id = ol_d_id
AND ol_w_id = :B2
AND ol_d_id = :B4
AND (ol_o_id < :B3)
AND ol_o_id >= (:B3 - 20)
AND s_w_id = :B2
AND s_quantity < :B1
AND d_id = :B4
AND c_last like :B5 ;

51 quest.com | confidential

Review the Execution Plan

select * from table (dbms_xplan.display_cursor(null,null, format=> '+report'));

Buffer Gets: 25m

Executions: 671

Elapsed Time: 229 secs

52 quest.com | confidential

Get Object Information

• Stock:

create index stock_idx

on stock

(s_i_id, s_w_id,

s_quantity);

53 quest.com | confidential

Get Object Information

• Orders:

Actual Rows = 60,000

54 quest.com | confidential

Find the Driving Table

orders

stock

district

200

1

1

.7%

.03

select count(*) from order_line

where ol_o_id < 200 and ol_o_id >= 200-20;

3941 / 600916 * 100 = .6558%

select avg(cnt) from (select c_last, count(*) cnt

from customer group by c_last);

20 / 60000 * 100 = .03333%

Filter on Stock: 3109 / 283000 * 100 = 1%

order_line

customer
warehouse

WHERE o_id = ol_o_id
AND o_c_id=c_id

AND s_i_id = ol_i_id

AND d_id = ol_d_id

AND ol_w_id = :B2

AND ol_d_id = :B4
AND (ol_o_id < :B3)

AND ol_o_id >= (:B3 - 20)

AND s_w_id = :B2

AND s_quantity < :B1

AND d_id = :B4
AND c_last like :B5 ;

1

20

1

1

6
60092

10

1%

55 quest.com | confidential

Engineer Out The Stupid

create index stock_idx on stock (s_i_id, s_w_id, s_quantity);

Previous Cost: 6099

56 quest.com | confidential

Try Auto Indexing – Include SOE Schema

SELECT index_name,table_name,

auto,visibility, compression,
segment_created, status

FROM user_indexes

WHERE auto='YES';

57 quest.com | confidential

Automatic Indexes

Total Space: 225m

Visible: 9m

58 quest.com | confidential

New Execution Plan

59 quest.com | confidential

Performance

62 quest.com | confidential

Popular Airline Flights in USA

SELECT
o.carrier, uc.description AS carrier_name
,ao.description AS origin_airport,co.Description AS origin_city
,o.fl_date,o.fl_num,o.tail_num
,ad.description AS destination_airport
,cd.Description AS destination_city ,w.Description Day_of_Week
FROM t_ontime o

INNER JOIN L_UNIQUE_CARRIERS uc ON uc.Code = o.UNIQUE_CARRIER
INNER JOIN L_AIRPORT_ID ao ON ao.Code = o.ORIGIN_AIRPORT_ID
INNER JOIN L_AIRPORT_ID ad ON ad.Code = o.DEST_AIRPORT_ID
INNER JOIN L_CITY_MARKET_ID co ON co.Code = o.ORIGIN_CITY_MARKET_ID
INNER JOIN L_CITY_MARKET_ID cd ON cd.Code = o.DEST_CITY_MARKET_ID
INNER JOIN L_WEEKDAYS w ON w.Code = o.DAY_OF_WEEK

WHERE to_date(fl_date,'YYYY-MM-DD') BETWEEN &beg_date AND &end_date
AND co.Description = &city
AND w.Description = &day_of_week;

US DOT - On-time Performance

L_UNIQUE_CARRIERS: 1620
L_AIRPORT_ID: 6438
L_CITY_MARKET_ID: 5823
L_WEEKDAYS: 8
T_ONTIME: 6784044

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

63 quest.com | confidential

No Other Option but Full Table Scans

64 quest.com | confidential

Find the Driving Table

select count(1) from t_ontime where fl_date

between '2015-12-01 00:00:00.000' and'2015-12-31 00:00:00.000‘;

select 479230.00 / 5819067.00 * 100 = 8.23

select count(1) from L_CITY_MARKET_ID where description = 'Chicago, IL'

select 1.00 / 5760.00 * 100 = 0.017

select count(*) from L_WEEKDAYS where description = 'Friday'

select 1.00 / 8 * 100 = 12.50

O

.02%

uc

co

w

ao

13%

1
800k

405k

1
1

18k

Filtering Selectivity

ad

cd

8%

1

19k

65 quest.com | confidential

Automatic Indexes

• Visible Indexes

66 quest.com | confidential

New Plan

67 quest.com | confidential

Original Performance

68 quest.com | confidential

Auto Index Performance

Original

69 quest.com | confidential

Summary

• There are a lot of challenges in Query Tuning

• If you remember the Top 5 Tips, they should take you a long way
– 1. Monitor Wait time

o Look at wait events, record baseline metrics

– 2. Review the Execution Plan
o Look for expensive steps, know what’s optimizer features are supporting the plan

– 3. Gather Object Information
o For expensive objects – know what the optimizer knows

– 4. Find the Driving Table
o Consider SQL Diagramming techniques

o If you have the Tuning & Diagnostic Packs, check out the Tuning Advisor

o Use 19c Automatic Indexing in dev/test

– 5. Engineer out the Stupid

Questions?

Thank you

