
The Future of Data and AI

Gerald Venzl
Lead Product Manager of Developer Initiatives
Oracle Database Development

Make modern apps and analytics
easy to develop, run, and leverage AI
for all use cases at any scale

Oracle Database Vision

How we deliver the Vision
Complete and Simple Platform for All Data Management Needs

Converged Database
Complete: all modern data types, workloads, and
development styles

Simple: Adds SQL statements, not another database, to
support requirements of modern applications

Running on

Autonomous Database
Fully Automated: end-to-end automation across the entire
database lifecycle

Cloud-Native: empowering organizations to build and run
scalable apps in a modern, dynamic environment

Instead of single-use proprietary databases

Developers and IT focus on Integration

Run a converged, standards-based DB

Developers and IT focus on Innovation

Comparing Database Strategies

Aurora

MongoDB Big QuerySynapse Snowflake

Quantum
Ledger

RedshiftDocumentDB

Next Generation Converged Database – Oracle Database 23ai

The Converged Database approach has delivered
incredible value to businesses

• Further advances in the industry continue to push
the boundaries of data management

Hence Oracle is introducing revolutionary
technologies that further unify data management
requirements at a more fundamental level

Relational Databases were created with the mission to –
ensure data consistency and enable declarative access to any data

Simple Data Organization

Powerful Declarative Language

Optimizations Transparent to AppsSQL

APP

Then JSON Databases were introduced with the mission to –
make data management simpler for application developers

Easy to map application objects to JSON
documents

Forced choice between simplicity of JSON
versus the power of relationalSQL

JSON

Then Graph Databases were introduced with the mission to –
make it simple to navigate connections between data

Great for querying social
networks, supply chains,
sequences of events, etc.

Forced choice between
simplicity of Graph versus
the power of relational

SQL

JSON

Now Vector Databases have been introduced with the mission to -
use AI to search data based on its semantic content

The worlds of data and
app dev have further
fractured

Cannot search for data
using a combination of
SQL, JSON Documents,
Graphs and AI Vector
Search

JSON AI

SQL

Revolutionary new Oracle technologies unify these worlds,
eliminating the need for limited and costly fractured solutions

Unification of
JSON and Relational

Unification of
Graph and Relational

Unification of
AI and Databases

AI

Simplicity of JSON
with the Power of Relational

Unification of JSON and Relational
Delivers Developer Nirvana:

Imagine we’ve been asked to build an app
that creates a student course schedule

STUDENT SCHEDULE FOR JILL
MATH MA JOR

Time 4:00 PM
Room B405
Teacher Anita

Time 2:00 PM
Room A102
Teacher Adam

Math 201 Science 102

Storing each student's schedule as a single
JSON document is simplest for development

STUDENT SCHEDULE FOR JILL
MATH MA JOR

Time 4:00 PM
Room B405
Teacher Anita

Time 2:00 PM
Room A102
Teacher Adam

Math 201 Science 102

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "16:00",
 "course" : "Science 102",
 "room" : "B405",
 "teacher" : "Anita"
 }
]
}

SCHEDULE FOR: J ILL

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "16:00",
 "course" : "Science 102",
 "room" : "B405",
 "teacher" : "Anita"
 }
]
}

GET

PUT

One GET operation retrieves a JSON document containing
all the schedule data in a simple hierarchical format

Any changes can be stored in one PUT of the document

STUDENT SCHEDULE FOR JILL
MATH MA JOR

Time 4:00 PM
Room B405
Teacher Anita

Time 2:00 PM
Room A102
Teacher Adam

Math 201 Science 102

Reading and writing the schedule
as a JSON document is easy

SCHEDULE FOR: J ILL

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "16:00",
 "course" : "Science 102",
 "room" : "B405",
 "teacher" : "Anita"
 }
]
}

S C H E D U L E F O R : J I L L

{
 "student" : "S4356",
 "name" : "Lucas",
 "major" : "Engineering",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "18:00",
 "course" : "Physics",
 "room" : "A115",
 "teacher" : "Alex"
 }
]
}

S C H E D U L E F O R : L U C A S

Duplicated

However, there are downsides
to storing data as JSON documents

Document storage models suffer
from data consistency issues

For example, all students taking a
course have a copy of the course
schedule and teacher information
in their document, making
updates expensive and risky

Also, declarative SQL is far more
powerful than the queries that
JSON databases provide

JSON creates severe issues when
data is used for multiple use cases

For example, adding a teacher schedule use
case requires a new document shape with
the teacher as the root

• The teacher document duplicates course
data that is also in the student documents

Changing the classroom for a course now
requires atomically updating

• Many student schedule documents

• AND many teacher schedule documents

STUDENT SCHEDULE FOR JILL
MATH MAJOR

Time 4:00 PM
Room B405
Teacher Anita

Time 2:00 PM
Room A102
Teacher Adam

Math 201 Science 102

Time 2:00 PM Room A312 Students 60
Time 4:00 PM Room B405 Students 90
Time 6:00 PM Room A151 Students 20

Science 102

TEACHER SCHEDULE FOR ANITA
SCIENCE DEPT

Storing data in normalized Relational format
enables consistency and declarative SQL

Normalized rows are the single source of truth for the data they store

However, relational apps must join multiple tables
to retrieve a student schedule

And construct application objects of the resulting data (ORM mapping)

Delivers the simplicity of JSON for developers,
with the power of relational data {

 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "16:00",
 "course" : "Science 102",
 "room" : "B405",
 "teacher" : "Anita"
 }
]
}

JSON Relational Duality eliminates these tradeoffs

SCHEDULE FOR: J ILL

S T U D E N T

S T U I D S N A M
E

M A J O R Y E A R

S3245 Jill Math First

… … … …

… … … …

… … … …

C O U R S E

C I D C L A S S R O O M T I M E T C H I D R E Q S

C123 MATH 201 A102 14:00 T543 {…}

C345 SCIENCE 102 B405 16:00 T789 {…}

… … … … … {…}

… … … … … {…}

S T U D E N T C O U R S E S

S T U I D C I D

S3245 C123

… …

S3245 C345

… …

T E A C H E R

T C H I D T E A C H E
R

T I N F O

… … …

T543 Adam …

T789 Anita …

… … …

Data is stored as rows in tables to provide the
consistency and declarative query benefits of relational

COURSE REQUIREMENTS FOR SCIENCE 102

Tables can include JSON
columns to store data whose
schema is dynamic or evolving

CREATE JSON DUALITY VIEW student_schedule
AS student
{{
 student : stuid
 name : sname
 major : major
 schedule : student_courses
 [{
 course
 {
 time : time
 course : cname
 courseId : cid
 room : room
 teacher @unnest
 {
 teacher : tname
 }
 }
 }]
};

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 …
]
}

New JSON Duality Views declare the mapping between rows and JSON
The view definition mirrors the structure of the desired JSON

Uses familiar
GraphQL syntax

S T U D E N T S C H E D U L E F O R : J I L L

CREATE JSON DUALITY VIEW student_schedule
AS student
{{
 student : stuid
 name : sname
 major : major
 schedule : student_courses
 [{
 course
 {
 time : time
 course : cname
 courseId : cid
 room : room
 teacher @unnest
 {
 teacher : tname
 }
 }
 }]
};

The view simply specifies the tables that contain the data to include in
the JSON document

T E A C H E R

C O U R S E

S T U D E N T

S T U D E N T
C O U R S E S

CREATE JSON DUALITY VIEW student_schedule
AS student
{{
 student : stuid
 name : sname
 major : major
 schedule : student_courses
 [{
 course
 {
 time : time
 course : cname
 courseId : cid
 room : room
 teacher @unnest
 {
 teacher : tname
 }
 }
 }]
};

And specifies the table columns that hold the values

S T U D E N T

STUID SNAME MAJOR YEAR

S3245 Jill Math First

… … … …

… … … …

… … … …

Apps use standard REST APIs to GET a document from the View

Views can also be accessed using
a MongoDB compatible API or SQL

JSON Duality Views are simple to query using document APIs

GET school.edu/student_schedule?q={"student":{"$eq":"Jill"}}

REST API

MongoDB API

SQL

DatabaseApp

Apps edit the document they previously got

Then simply PUT the document back into the View

• Or write it with the MongoDB API or SQL

As part of the update, the database detects the
changes made to the document and only modifies
the underlying table rows that have changed

JSON Duality Views are also simple to update

PUT school.edu/student_schedule/:stuid
Change Doc

REST API

MongoDB API

SQL

DatabaseApp

Time 4:00 PM
Room B405
Teacher Anita

Time 2:00 PM
Room A102
Teacher Adam

Math 201 Science 102

JSON Duality views allow the same underlying data
to be customized to match the needs of each app use case

Time 2:00 PM Room A312 Students 60
Time 4:00 PM Room B405 Students 90
Time 6:00 PM Room A151 Students 20

Science 102

Course Science 101 Teachers Adam, Alex
Course Science 102 Teachers Anita, Anna
Course Science 201 Teachers Anita, Adam

TEACHER SCHEDULE FOR ANITA
SCIENCE DEPT

CO U R S E CU R R ICU LU M
F O R SCIENCE

S TU D E N T S CH E D U LE F O R JILL
M A TH M A JO R

Much better for App Dev than JSON Databases!

Never
duplicates Data

Always
consistent

Widget
BQty: 1

Items: 200
Tax: 20
Total: 220

Welcome back Emma, ready to check out?

Using Duality, developers can also
add new document-centric apps
on top of existing relational data

CARL OLOFSON, RESEARCH VP,
DATA MANAGEMENT SOFTWARE, IDC

“Oracle’s JSON Relational Duality, a
truly revolutionary solution, is
perhaps one of the most important
innovations in information science in
20 years.”

Navigation simplicity of Graph
with the Power of Relational

Unification of Graph and Relational
Delivers Developer Nirvana:

D

A

C

B

Z

E

FH

G

$600 $10
00

$4
00

Graphs are a powerful way to query
connections and relationships
between data

For example, to discover indirect
money movements from bank
account 'B' to bank account 'E'

New Property Graph Views in Database 23ai enable
developers to treat data as graph vertices or edges

D

A

C

B

Z

E

FH

G

Graph views enable treating
bank account rows as graph vertices

$

BANK_ACCOUNTS

A C C I D C N A M E B A L A N C E

A Bill $2000

B Bella $8900

C Betty $3700

M O N E Y T R A N S F E R S

F R O M _ A C C T O _ A C C A M O U N T

B C $400

C D $600

D E $1000

D

A

C

B

Z

E

FH

G

$600 $10
00

$4
00

And enable treating money transfers
between accounts as graph edges

$

BANK_ACCOUNTS

A C C I D C N A M E B A L A N C E

A Bill $2000

B Bella $8900

C Betty $3700

M O N E Y T R A N S F E R S

F R O M _ A C C T O _ A C C A M O U N T

B C $400

C D $600

D E $1000

Defining a Property Graph view is simple

Just declare the tables whose rows represent vertices or edges in the graph

CREATE PROPERTY GRAPH bank_graph
 VERTEX TABLES (
 bank_accounts as accounts
 PROPERTIES (id, balance))
 EDGE TABLES (
 bank_transfers
 SOURCE KEY (from_acc) REFERENCES ACCOUNTS(ID)
 DESTINATION KEY (to_acc) REFERENCES ACCOUNTS(ID)
 PROPERTIES (amount, to_acc))
;

B A N K A C C O U N T S

M O N E Y
T R A N S F E R S

$

Querying the Graph is simple

SELECT graph.path
FROM GRAPH_TABLE (
 bank_graph
 MATCH (v1)-[e is BANK_TRANSFERS]->{1,3} (v2)
 WHERE v1.id = 'B'
 AND v2.id = 'E'
 COLUMNS LISTAGG(e.to_acc, ',') AS path)
) graph
;

This query finds money flows from account 'B' to account 'E' via
one intermediary bank account

A pure relational query is much more complex

-- transfers indirectly from 'B' to 'E'

SELECT v1.id as account_id1 , v2.id as account_id2
FROM bank_accounts v1,
 money_transfers btx,
 bank_accounts v2
WHERE (v1.id = btx.from_acc AND v2.id = btx.to_acc)
AND v1.id= 'B' AND v2.id= 'E'
UNION ALL
SELECT v1.id as account_id1 , v2.id as account_id2,
FROM bank_accounts v1,
 money_transfers btx,
 bank_accounts bc2,
 money_transfers btx2,
 bank_accounts v2
WHERE (v1.id = btx.from_acc AND bc2.id = btx.to_acc AND
 bc2.id = btx2.from_acc AND v2.id = btx2.to_acc)
AND v1.id= 'B' AND v2.id= 'E'
UNION ALL
SELECT v1.id as account_id1 ,v2.id as account_id2
FROM bank_accounts v1,
 money_transfers btx,
 bank_accounts bc2,
 money_transfers btx2,
 bank_accounts bac4,
 money_transfers btx5,
 bank_accounts v2
WHERE (v1.id = btx.from_acc AND bc2.id = btx.to_acc AND
 bc2.id = btx2.from_acc AND bac4.id = btx2.to_acc AND
 bac4.id = btx5.from_acc AND v2.id = btx5.to_acc)
AND v1.id= 'B' AND v2.id= 'E'
;

Requires 12 joins and 3 unions
to handle all combinations of
intermediate accounts

RON WESTFALL, RESEARCH DIRECTOR,
DIGITAL TRANSFORMATION, FUTURUM

“Now any enterprise running Oracle
Database can benefit from simple
declarative graph navigation on all
their existing business data”

With Oracle Database 23ai, one part of an app can treat
the data as relational, while other parts treat the same data
as a document, and others treat it as a graph

You get the best of all these worlds, at the same time
A huge benefit for developers, app dev, and data consistency

MARC STAIMER
SENIOR ANALYST, WIKIBON

“Developing new apps using a pure
JSON or Graph model is now like
committing to using a basic flip
phone for the next 20 years”

Unification of AI and
Databases

AI

AI uses a data
representation called
Vectors

3342162150

Vectors represent the semantic content
of images, documents, videos, etc.

A vector is a sequence of numbers,
called dimensions, used to capture
the important “features” of the data

Vector

33

42

16

21

50

House

Example: the features for a house image could be

Each dimension (number),
represents a different
feature of the house

Vector Features

Note: Features are determined by ML algorithms so are not as simple as shown here

33

42

16

21

Decorations

Building Materials

Number of Stories

Type of roof

House vectors when collapsed into 2 dimensions
instead of hundreds could look like this

d2

d1

The distance between the vectors
is proportional to their semantic similarity

d2

d1

Not as SimilarSimilar

d2

d1

blackberry

strawberryapple
raspberry

pear
plum

cat
kitten

dog

puppy
wolf

lion

Texas

California

New York
kiwi

elephant Animals

Fruit

Word similarity works the same way
Word vectors that are close are more semantically similar

States

Documents also
work the same
way

Documents
vectors that
represent similar
content are closer
in distance than
those representing
dissimilar content

But answering end-user questions requires business data

Product Data
Product attributes, inventory,

limitations, configurations, etc.

End-user data
Buying history, interests,

balance, location, etc.

Oracle Database is the leading repository of business data

Let’s look at an example

Imagine a house-hunting app that
helps customers find houses for
sale that are similar to a picture
the customer uploads

Finding a good match requires
combining semantic picture search with
searches on business data including:

• Customer data such as location
preference and budget

• Product data such as houses available for
sale by location and their price

One solution is to continuously send your
business data to a vector database

Searches on a combination of business and semantic
data are more effective if both types of data are stored together

Vector DatabaseBusiness Database

User and Product Data

You need to send lots of business data
since you can't predict the question

Dedicated vector databases are not good at searching or securing business data

Business Database Vector Database

The business data that is relevant to a question varies widely

Converged Database

The best solution is to add vector search to
your business database

Allows you to use both business data and vectors
when answering a question

• No need to move and synchronize data, manage
multiple products, etc.

Introducing:

AI Vector Search in
Oracle Database 23ai

Vector search to find similar unstructured data
combined with the power of
relational search on business data

Unification of AI and Databases
Delivers Developer Nirvana:

Oracle Database 23ai can store vectors using a new vector data type

CREATE TABLE house_for_sale (house_id number,
 price number,
 city varchar2(400),
 house_photo blob,
 house_vector vector
);

Allows finding data that is semantically similar to an input

No ML expertise
required

DBAs and Developers
can learn to use AI
vector search in minutes

SELECT …
FROM house_for_sale
ORDER BY vector_distance(house_vector, :input_vector)
FETCH FIRST 10 APPROXIMATE ROWS;

Find houses that are similar to this picture

Allows queries that combine AI vector search with business data about
customers and products

Combines customer
data, product data, and
AI search in 5 lines of
SQL!

A single integrated
solution

All data is fully consistent

SELECT …
FROM house_for_sale
WHERE price <= (SELECT budget FROM customer …)
AND city in (SELECT search_city FROM customer …)
ORDER BY vector_distance(house_vector, :input_vector)
FETCH FIRST 10 APPROXIMATE ROWS;

Find houses that are similar to this picture and
match the customer’s preferred city and budget

Oracle database accelerates
AI vector search using
sophisticated vector indexes

Entry Point

Query Vector

Oracle can partition vector indexes for improved performance

Partitioned by city

Vector index of house images

House image vectors can be
partitioned by city

Creates a vector index for each city

No need to search images of
houses in an unwanted city

1000x faster

…

Boston VegasChicago

RAC node 1 RAC node 2 RAC node 3

Smart Exadata Storage

Oracle transparently scales vector
processing across the computers in
a RAC cluster

With full data consistency

RAC node 1 RAC node 2 RAC node 3

Smart Exadata Storage

Oracle vector processing can
be isolated to a subset of RAC
computers to avoid disturbing
business OLTP

With full data consistency

Oracle vector search can be
transparently offloaded to
smart Exadata storage for faster
search

RAC node 1 RAC node 2 RAC node 3

Smart Exadata Storage

Oracle vector processing
can be sharded across
geographically distributed
databases for unlimited
scale or data sovereignty

Analytics

Parallel SQL
AI Vector Search also benefits
from many other core database
capabilities

Security

Transactions

Disaster Recovery

Adding semantic search to
relational search is great, but we
can do even better by adding
Generative AI

Vector Search + Generative AI enables end-users to simply ask
natural language questions

The user question plus relevant data can then be passed to
a Generative AI to provide an informed answer to the
question

AI Vector Search can map the natural language question to
relevant data in the database

Let’s look at how this works

Imagine you hire smart college grads to
answer your company’s support calls

The grads have lots of general
knowledge, but know nothing about
your products or past product issues

GenAI

Generative AI is like a smart college graduate

GenAI

Left on their own, the grads cannot give
good answers to product support questions

???

User

If the grads could be instantly augmented with product and
product support information, they could provide better answers

GenAI

User

Vector Databases augment Generative AI
by retrieving detailed, often private content
needed to answer questions

Called: Retrieval Augmented Generation (RAG)

That is where vector databases come in

Retrieval Augmented Generation works like this

User

The user’s question is
encoded as a vector and

sent to a Vector DB

1

Retrieval Augmented Generation works like this

Vector DB finds private content
(e.g. documents) that closely
match the user's question

2

User

Retrieval Augmented Generation works like this

The content is sent to the
GenAI to help answer the
user's question

3

GenAI

User

Retrieval Augmented Generation works like this

GenAI uses the content
plus general knowledge to

provide an informed
answer

4

GenAI

User

Documents

Using a similar process, Generative AI
can be used by developers to generate SQL
queries, JSON duality, and graph views

GraphsRows

Documents

This revolutionizes application development.
Developers will be more productive than ever
before thanks to the innovations in
Oracle Database 23ai

GraphsRows

Key Takeaways

Key takeaways

Oracle is introducing revolutionary new Converged
Database technologies that unify relational, JSON,
Graph, and AI Vector data models at a fundamental
level

Eliminates the simplicity vs power tradeoffs

Enables unprecedented productivity for app dev

Data, AI, and App Dev
are rapidly transforming

We encourage you to
embrace the change to
reap the rewards!

Learn more

