


New York Oracle Users Group + Viscosity Webinar

July 2024

Unlock the Power of PostgreSQL 
Table Partitioning

James Vanderpoel

Senior Principal 
Consultant

Viscosity North America

@viscosityna

linkedin.com/in/james-
vanderpoel-16249759/

James.vanderpoel@viscosi
tyna.com

mailto:James.vanderpoel@viscosity.com
mailto:James.vanderpoel@viscosity.com


James Vanderpoel has served in the Senior 
Principal Consultant Role for Viscosity North 
America since August of 2023.  
• He specializes in PostgreSQL as well as SQL 

Server, Azure Cloud, and all things Data 
Related in the Microsoft Ecosystem.  

• Prior to his role at Viscosity, he served as a 
Senior Database Administrator in DevOps/ 
Production for a number of companies in 
industries ranging from Finance to  Energy, 
going all the way back to 2016.  

James Vanderpoel

Senior Principal Consultant

@viscosityna

linkedin.com/in/james-vanderpoel-
16249759/

James.vanderpoel@viscosityna.com

mailto:James.vanderpoel@viscosity.com


Agenda 

01: What Is Table Partitioning and Why Use Such

02: Types of Partitioning in PostgreSQL

03: Partitioning Using Inheritance

04: Declarative Partitioning

05: Key Concepts, Best Practices



What is Table 
Partitioning And 
Why Use Such?

Partitioning is a technique that allows us to 
split large tables into smaller tables in a way 

that is transparent to the client program.



What is Table Partitioning and Why Use Such?

Table partitioning is a technique that improves query performance and data 
management for large datasets.
Key Benefits:

• Improved Query Performance: Partitioning enables faster query 
execution times through partition pruning, reducing the amount of data 
to be scanned.

• Easier Data Management: Partitioning simplifies the management of 
large datasets by splitting them into manageable partitions, streamlining 
actions like archiving, purging, and backup/restore operations.

Main Use Cases:
• Large datasets with varying query patterns
• Data archiving and purging requirements
• Performance optimization for specific queries or workloads



What is Table Partitioning and Why Use Such?

• Enhanced Data Loading and Indexing: Partitioning enables parallel data 
loading and more efficient indexing, leading to faster data ingestion and 
improved query performance.

• Cost-Effective Storage: Partitioning allows for storing less frequently 
accessed data on cheaper storage media, while keeping frequently accessed 
data on faster devices.

• Additional Performance Gains: Smaller partitioned tables and indexes lead 
to:
• Higher cache hit rates and reduced IO
• Faster vacuum processes with minimized execution time
• Reduced disk space usage during vacuum full operations

• Optimize your data management and performance with Postgres 
Partitioning!



Types of Table 
Partitioning in 
PostgreSQL

Partitioning using Inheritance
Declarative Partitioning



Types of Table Partitioning in PostgreSQL

Legacy Partitioning using Table 
Inheritance 

Available prior to PostgreSQL 10

• This method uses:
• Constraints to define partitions
• Rules or triggers to route data to the 

appropriate partition

• Key Characteristics:
• Child tables can have additional 

columns not present in the parent 
table

• Offers flexible partitioning beyond 
Range, List, and Hash options

Note: This method is no longer the 
recommended partitioning approach, 
superseded by Declarative Partitioning in 
PostgreSQL10. 

Declarative Partitioning
Introduced in PostgreSQL 10, Declarative 
Partitioning is the recommended 
method for partitioning tables. It 
supports three partitioning types:
• Range- Partitioned into “Ranges” 

defined by a Key Column, with lower 
and upper boundaries

• List- Partitioned by explicitly listing 
which key values appear in each 
partition

• Hash- Partitioned by specifying a 
modulus and a remainder for each 
partition. Each Partition will hold the 
rows for which the hash value of the 
partition key divided by the specified 
modulus will produce the specified 
remainder



Partitioning 
using 

Inheritance



Partitioning Using Table Inheritance

What’s the Object-Oriented Way of Getting Rich?……Inheritance!
PostgreSQL applies object-oriented inheritance to database tables. Here's how:

• Define a parent table (Table_1) and child tables (Table_2)
• The child table inherits from the parent table
• All records in the child table (Table_2) are automatically accessible through the parent table (Table_1)
• See below!

Create Parent and Child Tables:

CREATE TABLE Employees_Parent (
Emp_ID INT NOT NULL,
EmpName varchar(25));

CREATE TABLE EmpChild_1_100() INHERITS (Employees_Parent);

CREATE TABLE EmpChild_101_200() INHERITS (Employees_Parent);



Partitioning Using Table Inheritance

• Add Non-Overlapping Table Constraints to the Child Tables to Define Allowed Key Values in Each:
ALTER TABLE EmpChild_1_100 ADD CONSTRAINT Chk_ID CHECK(EmpID BETWEEN 1 AND 100)
ALTER TABLE EmpChild_101_200 ADD CONSTRAINT Chk_ID CHECK(EmpID BETWEEN 101 AND 200)

• Create Function To Be Called By Trigger & Trigger

Function:
CREATE FUNCTION fn_insert_Employee_trigger()
RETURNS Trigger AS $$
BEGIN
IF NEW.EmpID BETWEEN 1 AND 100
THEN INSERT INTO EmpChild_1_100 (EmpID, EmpName) 
VALUES (NEW.EmpID, NEW.EmpName);
ELSIF NEW.EmpID BETWEEN 101 AND 200 
THEN INSERT INTO EmpChild_101_200 (EmpID, EmpName) 
VALUES (NEW.EmpID, NEW.EmpName);
END IF;
RETURN NULL;
END;
$$
LANGUAGE 'plpgsql';

Trigger:
CREATE Trigger trg_insert_Employees_Prnt
BEFORE INSERT ON Employees_Parent 
FOR EACH ROW EXECUTE FUNCTION 
fn_insert_Employee_trigger();

Then Insert Values into Parent Table:
INSERT INTO Employees_Parent (EmpID, EmpName)
VALUES (1,'James'), (2,'Ali'),(3,'Miles’);



Take Note of Where Data Is

What is the difference between 
and Introverted Engineer and an 
Extroverted Engineer?
The Extroverted Engineer stares 
at your shoes when he talks to 
you!



Declarative 
Partitioning



Enter Declarative Partitioning

Introduced in Version 10 and enhanced in subsequent versions, Declarative Partitioning offers 
improved ease of use, performance, and features.  This is the preferred method.

• Partitioned Table: The table to be divided, which is virtual and storage-less.

• Partitioning Method: Choose from hash, range, or list partitioning.

• Partition Key: Specify column(s) or expressions to determine partitioning.

How it Works:

• The partitioned table is considered a “Virtual” table, having no storage of its own. Underlying 
partitions (regular tables associated with partitioned tables) store the data.

• Rows are routed to the correct partition based on the partition key.

• Updating the partition key may migrate a row to a different partition if it no longer meets the 
original partition's boundaries.



Declarative Partitioning

Advanced Partitioning Features

• Sub-Partitioning for Enhanced Partition-Pruning
• Partitions can themselves be defined as partitioned tables, enabling sub-partitioning and 

potential additional gains in specific use cases.

• Partition Flexibility
• Partitions can have unique indexes, constraints, and default values.
• Partitions can be foreign tables but require careful management to ensure partition rule 

compliance.

• Partitioned Table Management
• Partitioned Tables are virtual and cannot be converted to/from regular tables.
• Use ATTACH PARTITION and DETACH PARTITION to add/remove partitions, converting them 

to standalone tables.

• Note: Table constraints for partition boundaries are implicitly created but can be manually 
defined in conjunction with partition management actions.



Declarative Partitioning DDL

2nd:
DDL for Range Partitions:
CREATE TABLE <<table_name>> 
PARTITION of <<Partitioned Table>> 
FOR VALUES FROM <<lower_bound>> 
TO <<upper_bound>>
DDL for List Partitions:
CREATE TABLE <<table_name>> 
PARTITION of <<Partitioned Table>> 
FOR VALUES IN <<Partition_Value>>
DDL for HASH Partitions:
CREATE TABLE <<table_name>> 
PARTITION of <<Partitioned Table>> 
FOR VALUES WITH (MODULUS <<int>>, 
REMAINDER<<int>> );

1st:
CREATE TABLE <<table_name>>

(<<column>>,
<<column>>)

Partition BY 
<<Pttn_Method>>(<<partition_key_colu
mn(s)>>);
The partition method can again be 
RANGE, LIST, and HASH. 



Range Table Partitioning

Divide Rows into Defined Ranges
• Range Partitioning organizes rows into ranges based 

on a key column or columns, with boundaries 
specified by:
• Lower bound (inclusive)
• Upper bound (exclusive)

Examples:
• Partitioning by date or identifier ranges, such as:

• Date ranges (e.g., monthly or quarterly)
• Identifier ranges (e.g., employee ID or customer 

ID)

Insertion Behavior:
• Inserting EmpID = 6 into the "Employees" Partitioned 

Table would place it in the "Emp6_10" Partition, due to 
the exclusive upper bound.



List Table Partitioning

List Partitioning
• Rows are divided into partitions based on specific values in a column.  
• This Partitioning scheme is useful when data can be categorized into distinct, 

non-overlapping sets, and those values are predictable and stable. 



Hash Table Partitioning

• Distribute Rows Using Hash Values

• Hash Partitioning divides rows by:
• Specifying a modulus (divisor)
• Specifying a remainder for each partition

• Partition Assignment:
• Rows are assigned to partitions based on the 

hash value of the partition key, divided by the 
modulus, producing the specified remainder.

• Ideal Use Case:
• When no natural partitioning method exists, 

Hash Partitioning evenly distributes data.

• Important Note:
• Null values are always assigned to the partition 

with a remainder of zero.



Partition Maintenance: Adding New Partitions

Attaching a New Partition
Range Partition Scheme example
• Create new partition based on TimeStamp Column 
• Using the same CREATE TABLE…..PARTITION OF….Syntax



Partition Maintenance: Adding New Partitions 
Alternative Methodology
Efficient Partition Attachment

To minimize locking conflicts:
• Create a new table outside the partition structure
• Attach it as a partition later using ATTACH PARTITION

This approach:
•Only requires a SHARE UPDATE EXCLUSIVE lock (less restrictive than the ACCESS EXCLUSIVE otherwise 
required)
•Supports concurrent operations on the partitioned table

Optimization Tips:
•Use CREATE TABLE … LIKE to replicate the parent table's definition
•Create a CHECK constraint enforcing partition logic before attachment to avoid the scan that is otherwise 
needed to validate the implicit partition constraint
•Drop the redundant CHECK constraint after the fact



Detaching An Existing Partition

To Remove an Existing Partition from a Partitioned Table, use the 
DETACH PARTITION Command.

Efficiently Remove and Add Partitions
• To maintain relevant data and optimize storage
• Periodically remove partitions containing outdated 

data
• Add new partitions for incoming data

Key Benefit:
• Modify the partition structure to quickly eliminate 

large datasets
• Avoid physically moving data, reducing execution time 

and hassle
Optimized Data Removal:

•Drop a partition table or detach and drop a partition to:
• Eliminate millions of records quickly
• Avoid ACCESS EXCLUSIVE lock on the parent table
• Outperform traditional DELETE FROM operations



Necessary Default Partition
Handling Unpartitioned Records
• If a record doesn't meet the partition scheme logic:

• Insertion will fail unless a Default Partition is defined
• Default Partition acts as a catch-all for records outside existing partition 

boundaries



Necessary Default Partition (cont’d)

• To avoid this issue, it is recommended to create a Default Partition, where all the 
values that are not reflected in the mapping of the child tables will be inserted. 

• These outlying rows will be caught and can be allocated to the proper partitions after 
the fact and migrated over as needed.



Partitioning and Tablespaces

Tablespaces allow administrators to define 
locations in the file system where the files 
representing database objects can be stored. 

• Once created, a tablespace can be referred 
to by name when creating database 
objects.

• Tablespaces allow administrators to use 
knowledge of the usage pattern of 
database objects to optimize performance. 

• Can place child tables on different 
tablespaces, affording the option of storing 
older, less frequently accessed data on 
cheaper storage media, while keeping 
your more frequently accessed data ( like 
more recent timestamp-valued partition 
key columns) on faster storage devices.



Partition Pruning

• Partition Pruning is a query optimization technique that improves performance for declaratively-
partitioned tables.

• With such enabled, under certain circumstances such as when the partition key column is used 
in a WHERE Clause, the PostgreSQL Planner may examine the definition of each partition and 
prove certain partitions need not be scanned because they couldn’t contain any rows meeting 
the query’s WHERE clause by the implicit constraints put on them.



Partition Pruning Examples Partitioning Pruning Off-All Partitions are scanned.

Partitioning Pruning On-Only one Partition is scanned.

Partitioned Table



Partition Pruning- Cont’d

• Note: Partition Pruning is driven only by the implicit constraints created by 
the Partitions, not by the presence of indexes. It is not necessary to define 
indexes on the key columns.  Whether an index should be created for a 
partition depends on whether you expect that queries that scan the partition 
will scan a large part or just a small part, in which case an index would help.   

• Additionally, partition pruning can take place both during the planning and 
execution phase of a query’s life, such as during subquery execution or with 
the use of execution-time parameters like parameterized nested loop joins.  



Sub-Partitioning

• PostgreSQL also supports sub-
partitioning, where you can further 
divide partitions that are expected 
to become larger than other 
partitions. This can lead to an 
excessive number of partitions, so 
restraint is advisable.

• In this example, we sub-partitioned 
down to days in the month, but you 
can choose to sub-partition on 
different columns and using 
different partition methods. 



Table Partitioning and Logical Replication

• Before PostgreSQL 13, Logical Replication of Declaratively Partitioned Tables 
was not supported.  Previously, partitions had to be replicated individually.  
You would have to create separate publications for each underlying “child” 
partition. 

• With PostgreSQL 13 and beyond, a partitioned table can be published 
explicitly, causing all its partitions to be published automatically.  
Addition/removal of a partition causes it to likewise be added to or removed 
from the publication.

• Additionally, on the subscriber side, logical replication supports replicating 
into partitioned tables.  Prior to this release, subscribers could only receive 
rows into non-partitioned tables.



Best Practices with Partitioning

• Partitioning isn’t a magic bullet.  If it isn’t done right, with proper access 
pattern-awareness it can hurt overall performance in some cases, as you are 
now having to do more joins between disparate tables.  One of the most 
critical design decisions is what to partition on. The best choice is generally 
the column or set of columns that most frequently appear in WHERE clauses. 

•  Choosing the Target Number of Partitions is also a critical decision.  Not 
having enough partitions may mean that indexes remain too large and that 
data locality remains poor which can result in low cache hit ratios. However, 
having too many partitions can also lead to longer query planning times and 
higher memory consumption during both Planning and Execution phases.



More Reading: Where to Go From Here

Official PostgreSQL Documentation:
PostgreSQL: Documentation: 16: 5.11. Table Partitioning
https://www.postgresql.org/docs/current/ddl-partitioning.html
PgPartman Ext: An Extension to Automate the Creation and 
Maintenance of Table Partitions:
GitHub - pgpartman/pg_partman: Partition management 
extension for PostgreSQL
https://github.com/pgpartman/pg_partman

https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.postgresql.org/docs/current/ddl-partitioning.html
https://github.com/pgpartman/pg_partman
https://github.com/pgpartman/pg_partman


All Viscosity hosted webinar 
recordings and conference 
sessions slide decks will be 

posted to 
OraPub.com for free and paid 

members!



The End

I would tell you all a joke about a Partition….but I’m not sure you 
would get over it…..



Keep Up To Speed With all 
Upcoming Events!

https://events.viscosityna.co
m



Follow Us Online!

Facebook.com/ViscosityNA

LinkedIn.com/company/Viscosity-North-America

@ViscosityNA

Viscosity North America

Viscosity_NA

https://www.facebook.com/ViscosityNA
https://www.linkedin.com/company/Viscosity-North-America/

